Кодирование информации в локальных сетях
Стандартный манчестерский код имеет несколько вариантов, один из которых показан на рис. 2.10. Данный код, в отличие от классического, не зависит от перемены мест двух проводов кабеля. Особенно это удобно в случае, когда для связи используется витая пара, провода которой легко перепутать. Именно этот код используется в одной из самых известных сетей Token-Ring фирмы IBM.
Принцип данного кода прост: в начале каждого битового интервала сигнал меняет уровень на противоположный предыдущему, а в середине единичных (и только единичных) битовых интервалов уровень изменяется еще раз. Таким образом, в начале битового интервала всегда есть переход, который используется для самосинхронизации. Как и в случае классического кода Манчестер-П, в частотном спектре при этом присутствует две частоты. При скорости 10 Мбит/с это частоты 10 МГц (при последовательности одних единиц: 11111111…) и 5 МГц (при последовательности одних нулей: 00000000…).
Здесь же стоит упомянуть о том, что часто совершенно неправомерно считается, что скорость передачи в бодах равняется скорости передачи в битах в секунду. Это верно только в случае кода NRZ. Скорость в бодах характеризует не количество передаваемых бит в секунду, а количество изменений уровня сигнала в секунду. При использовании кодов RZ или Манчестер-П требуемая скорость в бодах оказывается вдвое выше, чем при коде NRZ, поэтому логичнее измерять скорость передачи по сети не в бодах, а в битах в секунду (бит/с, Кбит/с, Мбит/с).
Все разрабатываемые в последнее время коды призваны найти компромисс между требуемой при заданной скорости передачи полосой пропускания кабеля и возможностью самосинхронизации. Разработчики стремятся сохранить самосинхронизацию, но не ценой двукратного увеличения полосы пропускания.
Чаще всего для этого в поток передаваемых битов добавляют биты синхронизации, например, один бит синхронизации на 4, 5 или 6 информационных битов или два бита синхронизации на 8 информационных битов. Правда, в действительности все обстоит несколько сложнее: кодирование не сводится к простой вставке в передаваемые данные дополнительных битов. Группы информационных битов преобразуются в передаваемые по сети группы с количеством битов на один или два больше. Приемник, естественно, осуществляет обратное преобразование, восстанавливает исходные информационные биты. Довольно просто осуществляется в этом случае и обнаружение несущей частоты (то есть детектирование передачи).
Так, в сети FDDI (скорость передачи 100 Мбит/с) применяется код 4В/5В, который 4 информационных бита преобразует в 5 передаваемых битов. При этом синхронизация приемника осуществляется один раз на 4 бита, а не в каждом бите, как в случае кода Манчестер-П. Требуемая полоса пропускания увеличивается по сравнению с кодом NRZ не в два раза, а только в 1.25 раза (то есть составляет не 100 МГц, а всего лишь 62.5 МГц). По тому же принципу строятся и другие коды, например 5В/6В, используемый в стандартной сети lOOVG-AnyLAN, или 8В/10В, используемый в сети Gigabit Ethernet.
В сегменте 100BASE-T4 сети Fast Ethernet применен несколько иной подход. Там используется код 8В/6Т, предусматривающий параллельную передачу трех трехуровневых сигналов по трем витым парам. Это позволяет достичь скорости передачи 100 Мбит/с на дешевых кабелях с витыми парами категории 3, имеющих полосу пропускания всего лишь!6 МГц (см. табл. 2.1). Правда, это требует большего расхода кабеля и увеличения количества приемников и передатчиков. К тому же принципиально важно, чтобы все провода были одной длины, чтобы задержки сигнала в них не различались на заметную величину.
Подробнее эти коды будут рассмотрены в разделах книги, посвященных конкретным типам существующих сетей.
Все упомянутые коды предусматривают непосредственную передачу в сеть цифровых двух – или трехуровневых прямоугольных импульсов. Однако иногда в сетях используется и другой путь – модуляция информационными импульсами высокочастотного аналогового сигнала. Такое аналоговое кодирование позволяет при переходе на широкополосную передачу существенно увеличить пропускную способность канала связи. К тому же, как уже отмечалось, при прохождении по каналу связи аналогового сигнала (синусоидального) не искажается форма сигнала, а только уменьшается его амплитуда, а в случае цифрового сигнала еще и искажается форма сигнала (см. рис. 2.5).
Рис. 2.14. Аналоговое кодирование цифровой информации
К самым простым видам аналогового кодирования относятся следующие (рис. 2.14):
- амплитудная модуляция (AM), при которой логической единице соответствует наличие сигнала, а логическому нулю – его отсутствие (или сигнал меньшей амплитуды). Частота сигнала остается постоянной;
- частотная модуляция (ЧМ), при которой логической единице соответствует сигнал более высокой частоты, а логическому нулю – сигнал более низкой частоты (или наоборот). Амплитуда сигнала остается постоянной;
- фазовая модуляция (ФМ), при которой смене логического нуля на логическую единицу и логической единицы на логический нуль соответствует резкое изменение фазы синусоидального сигнала одной и той же частоты и амплитуды.
Чаще всего аналоговое кодирование используется при передаче информации по каналу с узкой полосой пропускания, например по телефонным линиям в глобальных сетях. В локальных сетях оно применяется редко из-за высокой сложности и стоимости как кодирующего, так и декодирующего оборудования.