Иллюстрированный самоучитель по MathCAD 11

Обработка данных

  • Интерполяция

    Когда Вы имеете дело с выборкой экспериментальных данных, то они, чаще всего, представляются в виде массива, состоящего из пар чисел (xi, yi). Поэтому возникает задача аппроксимации дискретной зависимости y(xj непрерывной функцией f(x).
  • Линейная интерполяция

    Самый простой вид интерполяции – линейная, которая представляет искомую зависимость А(Х) в виде ломаной линии. Интерполирующая функция А(Х) состоит из отрезков прямых, соединяющих точки (рис. 15.2). | Рис. 15.2.
  • Кубическая сплайн-интерполяция

    В большинстве практических приложений желательно соединить экспериментальные точки не ломаной линией, а гладкой кривой. Лучше всего для этих целей подходит интерполяция кубическими сплайнами, т. е. отрезками кубических парабол (рис. 15.4).
  • Полиномиальная сплайн-интерполяция

    Более сложный тип интерполяции – так называемая интерполяция В-сплайнами. В отличие от обычной сплайн-интерполяции (см. разд. 15.1.2), сшивка элементарных В-сплайнов производится не в точках хi а в других точках ui, координаты которых предлагается ввести пользователю.
  • Экстраполяция функцией предсказания

    Все рассмотренные выше (см. разд. 15.1.1-15.1.3) функции осуществляли экстраполяцию данных за пределами их интервала с помощью соответствующей зависимости, основанной на анализе расположения нескольких исходных точек на границах интервала.
  • Многомерная интерполяция

    Двумерная сплайн-интерполяция приводит к построению поверхности z(x,y), проходящей через массив точек, описывающий сетку на координатной плоскости (х,у). Поверхность создается участками двумерных кубических сплайнов, являющихся функциями (х,у) и имеющих непрерывные первые и вторые производные по обеим координатам.
  • Регрессия. Линейная регрессия.

    Задачи математической регрессии имеют смысл приближения выборки данных (Xi..Yi некоторой функцией f (х), определенным образом минимизирующей совокупность ошибок |f(xi)-yi|. Регрессия сводится к подбору неизвестных коэффициентов, определяющих аналитическую зависимость f(х).
  • Полиномиальная регрессия

    В Mathcad реализована регрессия одним полиномом, отрезками нескольких полиномов, а также двумерная регрессия массива данных. | Полиномиальная регрессия означает приближение данных (xi, yi) полиномом k-й степени А(х)=а+bх+сх2+dх3+…+hxk (рис. 15.14).
  • Регрессия специального вида

    Кроме рассмотренных, в Mathcad встроено еще несколько видов трехпараметрической регрессии. Их реализация несколько отличается от приведенных выше вариантов регрессии тем, что для них, помимо массива данных, требуется задать некоторые начальные значения коэффициентов а,b,с.
  • Регрессия общего вида

    В Mathcad можно осуществить регрессию в виде линейной комбинации C1f1(x)+C2f2 (х) +…, где fi(х) – любые функции пользователя, а Ci – подлежащие определению коэффициенты. Кроме того, имеется путь проведения регрессии более общего вида, когда комбинацию функций и искомых коэффициентов задает сам пользователь.
  • Сглаживание и фильтрация. Встроенные функции для сглаживания.

    При анализе данных часто возникает задача их фильтрации, заключающаяся в устранении одной из составляющих зависимости y(xi). Наиболее часто целью фильтрации является подавление быстрых вариаций y(xi), которые чаще всего обусловлены шумом.
  • Скользящее усреднение

    Помимо встроенных в Mathcad, существует несколько популярных алгоритмов сглаживания, на одном из которых хочется остановиться особо. Самый простой и очень эффективный метод – это скользящее усреднение. Его суть состоит в расчете для каждого значения аргумента среднего значения по соседним w данным.
  • Устранение тренда

    Еще одна типичная задача возникает, когда интерес исследований заключается не в анализе медленных (или низкочастотных) вариаций сигнала у(х) (для чего применяется сглаживание данных), а в анализе быстрых его изменений Часто бывает, что быстрые (или высокочастотные) вариации накладываются определенным образом на медленные, которые обычно называют трендом.
  • Полосовая фильтрация

    В предыдущих разделах была рассмотрена фильтрация быстрых вариаций сигнала (сглаживание) и его медленных вариаций (снятие тренда). Иногда требуется выделить среднемасштабную составляющую сигнала, уменьшив как более быстрые, так и более медленные его компоненты.
  • Интегральные преобразования. Преобразование Фурье.

    Интегральные преобразования массива сигнала у(х) ставят в соответствие всей совокупности данных у(х) некоторую функцию другой координаты F(V). Рассмотрим встроенные функции для расчета интегральных преобразований, реализованных в Mathcad.
  • Вейвлетное преобразование

    В последнее время возрос интерес к другим интегральным преобразованиям, в частности вейвлетному (или дискретному волновому) преобразованию. Оно применяется, главным образом, для анализа нестационарных сигналов и для многих задач подобного рода оказывается более эффективным, чем преобразование Фурье.
  • Встроенная функция вейвлет-преобразования

    Mathcad имеет одну встроенную функцию для расчета вейвлет-преобразования на основе вейвлетобразующей функции Даубечи. | wave (у) – вектор прямого вейвлет-преобразования; | iwave(v) – вектор обратного вейвлет-преобразования; | у – вектор данных, взятых через равные промежутки значений аргумента;
  • Программирование других вейвлет-преобразований

    Помимо встроенной функции вейвлет-спектра Даубечи и возможностей пакета расширения Mathcad 11, возможно непосредственное программирование алгоритмов пользователя для расчета вейвлет-спектров. Оно сводится к аккуратному расчету соответствующих семейств интегралов.
Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.