Иллюстрированный самоучитель по введению в экспертные системы


McDermott J. (1988). Preliminary steps towards a taxonomy of problem solving methods. In Automating Knowledge Acquisition for Expert Systems (Marcus S., eds.), Chapter 8. Boston: Kluiver Academic.

McDermott J. (1993). Rl ("XCON") at age 12: lessons from an elementary school achiever. Artificial Intelligence, 59, p. 241-247.

McDermott J .and Bachant J. (1984). Rl revisited: four years in the trenches. AI Magazine, 5(3), Fall, p. 21-32.

McDermott J .and Forgy C. L. (1978). Production system conflict resolution strategies. In Pattern Directed Inference Systems (Waterman D. A .and Hayes-Roth F., eds.), p. 177-199. New York: Academic Press.

McNeill D .and Freiberger P. (1993). Fuzzy Logic. New York: Simon and Schuster.

Meltzer B .and Michie D., eds. (1969). Machine Intelligence 4. Edinburgh: Edinburgh University Press.

Meyers S. (1995). More Effective C++: 35 New Ways to Improve Your Programs and Designs. Reading, MA: Addison-Wesley.

Meyers S. (1997). Effective C++; 50 Specific Ways to Improve Vom Programs and Designs, 2nd edn. Reading, MA: Addison-Wesley.

Michalski R. S. (1983). A theory and methodology of inductive learning. In Machine Learning (Michalski R. S., Carbonell J. G .and Mitchell T. M., eds.), Chapter 4. Palo Alto, CA: Tioga.

Michalski R. S., Carbonell J. G .and Mitchell T. M., eds. (1983). Machine Learning. Palo Alto, CA: Tioga.

Michalski R. S., Carbonell J. G .and Mitchell T. M, eds. (1986). Machine Learning Vol. II. Palo Alto, CA: Tioga.

Michie D., eds. (1968). Machine Intelligence 3. Edinburgh: Edinburgh University Press.

Michie D., eds. (1979). Expert Systems in the Micro-Electronic Age. Edinburgh: Edinburgh University Press.

Mingers J. (1989, a). An empirical comparison of selection measures for decision tree induction. Machine Learning, 3, p. 319-342.

Mingers J. (1989, b). An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4, p. 227-243.

Minsky M., eds. (1968). Semantic Information Processing. Cambridge, MA: MIT Press.

Minsky M. (1972). Computation: Finite and Infinite Machines. London: Prentice-Hall.

Minsky M. (1975). A framework for representing knowledge. In The Psychology of Computer Vision (Winston P. H., eds.) p. 211-277. New York: McGraw-Hill. (Русский перевод: Минский М. Структура для представления знания. – В сб. Психология машинного зрения. Под. ред. П. Уинстона. М.: Мир, 1978. – с. 249-338.)

Mitchell Т. М. (1978). Version Spaces: An Approach to Concept Learning. Report No. STAN-CS-78-711, Computer Science Department, Stanford University.

Mitchell Т. М. (1982). Generalization as search. Artificial Intelligence, 18, 203-226.

Mitchell Т. М. (1997). Machine Learning. New York, NY: McGraw-Hill.

Mitchell T. M., Keller R. M .and Kedar-Cabelli S. T. (1986). Explanation-based generalization:

A unifying view. Machine Learning, 1(1), p. 47-80. Moore J. D. (1995). Participating in Explanatory Dialogues. Cambridge MA: MIT Press.

Moser M. G. (1983). An Overview of NIKL, the New Implementation of KL-ONE. Technical Report No. 5421, Cambridge MA: Bolt, Beranek and Newman.

Moore J. D .and Paris C. L. (1993). Planning text for advisory dialogues: capturing intentional and rhetorical information. Computational Linguistics, 19(4), p. 651-695.

Moore J. D., Lemaire B .and Rosenblum J. A. (1996). Discourse generation for instructional applications: identifying and exploiting relevant prior explanations. Journal of the Learning Sciences, 5(1), p. 49-94.

Musen M. A. (1992). Overcoming the limitations of role-limiting methods. Knowledge Acquisition, 4(2), p. 165-170.

Musen M. A. (1989). Automated support for building and extending expert models. Machine Learning, 4(3-4), p. 347-376.

Musen M. A., Gennari J. H .and Wong W. W. (1995). A rational reconstruction of INTERNIST-I using PROTEGE-II. Knowledge Systems Laboratory, Medical Computer Science, KSL-95-46.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.