Иллюстрированный самоучитель по введению в экспертные системы

Формирование пояснений на основе знаний

Существуют две причины, которые побуждают разработчиков экспертных систем делать их по возможности "прозрачными" для пользователя. Под прозрачностью при этом понимается способность системы объяснить пользователю, почему принято именно такое решение, вследствие каких рассуждений система пришла к тому или иному выводу.

  • Клиент, который обращается к экспертной системе за советом, должен знать, на основе каких логических доводов этот совет был сформирован. Только получив исчерпывающую информацию о ходе рассуждений, клиент может с доверием отнестись к полученному совету, поскольку за последствия неверно принятого решения расплачиваться придется не столько "советчику", сколько чересчур доверчивому клиенту.
  • Инженер, обслуживающий экспертную систему, должен быть уверен в правильности работы всех подсистем, а проверить это он может, только получив от экспертной системы всю возможную информацию о ходе рассуждений в процессе решения задач.

Эту главу мы начнем с краткого обзора ранних работ, касающихся включения в экспертные системы специальных средств, формирующих для пользователя информацию о ходе рассуждений (в дальнейшем для краткости мы будем называть ее поясняющей информацией). Затем более детально будут рассмотрены средства формирования пояснений экспертной системы CENTAUR, о которой уже упоминалось в главе 13. И в заключение мы обсудим одно из последних исследований в этой области, выполненное в рамках проекта Explainable Expert Systems, в котором основное внимание было уделено обеспечению прозрачности экспертной системы с точки зрения инженеров по знаниям, т.е. была предпринята попытка рассмотреть в комплексе вопросы формирования поясняющей информации и извлечения знаний.


На начальном этапе исследований в области экспертных систем, которые выполнялись в Станфордском университете в 60-70-х годах/поясняющая информация предоставлялась в виде трассировки процесса выполнения программы и использовалась в основном для отладки разрабатываемых систем. Этого было достаточно для разработчиков экспериментальных систем, подобных MYCIN, но не соответствовало тому уровню сервиса пользователя, который необходим для коммерческого программного продукта. Впоследствии вопросу формирования информации, которая давала бы возможность пользователю четко представить себе ход рассуждений программы, стало уделяться значительно больше внимания.

Исследователи пришли к заключению, что автоматическое формирование пояснений требует доступа к модели предметной области точно так же, как и извлечение знаний (см. об этом в главе 10). Другими словами, представление о знаниях в конкретной области необходимо для предоставления пользователю информации о поведении системы в процессе формирования результата точно так же, как и для приобретения новых знаний.

Такое знание позволит перекинуть мост между деталями реализации процесса вывода (например, в какой последовательности активизировались правила) и стратегией поведения системы (например, какие соображения побудили систему выбрать ту или иную гипотезу из множества конкурирующих).

В последние десятилетия специалисты серьезно потрудились над развитием этой идеи, и обзор некоторых из полученных результатов читатель найдет в разделе 16.2. Совершенно очевидно, что проблемы извлечения знаний и формирования пояснений тесно связаны. По сути, они представляют две стороны одной медали. Существенным толчком для совершенствования средств, используемых для предоставления пользователю пояснений, как, впрочем, и для извлечения знаний, стало развитие методов графического интерфейса в современных операционных системах, которые обеспечивают возможность вывода не только статической, но и динамической видеоинформации со звуковым сопровождением.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.