Формулы Шеннона для непрерывного и дискретного каналов
Прежде чем рассматривать формулы Шеннона, целесообразно обратиться еще раз к рис. 12.1 и пояснить функции отдельных устройств, так как это пригодится при дальнейшем изложении.
Кодер/декодер в конкретной системе может совмещать, на первый взгляд, прямо противоположные функции.
Во-первых, кодер может быть использован для внесения избыточности в передаваемую информацию с целью обнаружения влияния шумов и помех на приемном конце (там этим занимается соответствующий декодер). Избыточность проявляется в добавлении к передаваемой полезной информации так называемых проверочных разрядов, формируемых, как правило, чисто аппаратурными средствами из информационной части сообщения. Известно много различных помехоустойчивых кодов, причем самый простой однобитовый код (бит четности/нечетности) далеко не всегда удовлетворительно работает на практике. Вместо него в локальных сетях используются контрольная сумма или, что еще лучше, циклический код (CRC – Cyclic Redundancy Check), занимающий в формате передаваемого сообщения 2 или 4 байта, независимо от длины в байтах информационной части сообщения.
Во-вторых, при больших объемах передаваемой информации целесообразно ее сжать до передачи, если есть такая возможность. В этом случае говорят уже о статистическом кодировании. Здесь уместна аналогия с обычными программами архивации файлов (типа arj, rar, pkzip и др.), которые широко используются при организации обмена в сети Internet. Более того, если проблема с большими объемами информации и после такого обратимого сжатия до конца не решается, можно рассмотреть возможность необратимого сжатия информации с частичной ее потерей ("огрублением"). Конечно, здесь не может быть и речи об отбрасывании части чисто цифровых данных, но по отношению к изображениям иногда можно пойти на снижение разрешения (числа пикселей) без искажения общего вида "картинки". Здесь можно упомянуть алгоритмы сжатия JPEG для изображений и MPEG для видео – и аудиопотоков, допускающие значительные степени компресии без уменьшения разрешения и с минимальными потерями.
Понятно, что оба типа кодирования (помехоустойчивое избыточное кодирование и статистическое кодирование) служат, в конечном счете, решению одной задачи – повышению качества передачи как в смысле отсутствия или минимального допустимого уровня ошибок в принятом сообщении, так и в смысле максимального использования пропускной способности канала передачи. Поэтому в высокоскоростных модемах нередко реализуются оба типа кодирования.
Что касается функций модулятора/демодулятора на рис. 12.1, то они, как уже было сказано, включают согласование полосы частот, занимаемой сигналами, с полосой пропускания линии передачи. Кроме того, выходные каскады передатчиков (после модуляторов) реализуют усиление сигналов по мощности и амплитуде, что является наиболее очевидным средством увеличения отношения сигнал/шум. Действительно, ничто (кроме, пожалуй, техники безопасности…) не заставляет разработчиков придерживаться в аналоговом канале столь жестких ограничений сигналов по амплитуде, как в дискретных (цифровых) каналах (от 0 до + 5В при использовании аппаратуры в стандарте ТТЛ). Например, для распространенного стандарта последовательного порта компьютера RS-232C предусмотрена "вилка" амплитуд от -(3…12)В до +(3…12)В. Конечно, в обоих случаях речь идет об амплитудах вблизи передатчика, в то время как вблизи приемника амплитуда сигналов может быть существенно ослаблена.
Формула Шеннона для непрерывного (аналогового) канала связи достаточна проста:
Где Vмакс – максимальная скорость передачи (бит/сек), Af – полоса пропускания линии передачи и, одновременно, полоса частот, занимаемая сигналами (если не используется частотное разделение каналов), S/N – отношение сигнал/шум по мощности. График этой зависимости приведен на рис. 12.2 (формуле Шеннона соответствует кривая под названием "теоретический предел").
Рис. 12.2. Зависимость максимальной скорости передачи VU3KCдля аналоговой линии от отношения сигнал-шум по мощности S/N