Иллюстрированный самоучитель по Cubase SX

Оцифровка звука

После того как мы немного разобрались с разрядностью АЦП звуковой карты, пришло время поговорить о частоте дискретизации.

В процессе работы АЦП происходит не только квантование сигнала по уровню, но и его дискретизация во времени. Сигнал, непрерывно изменяющийся во времени, заменяют рядом отсчетов этого сигнала. Обычно отсчеты сигнала берутся через одинаковые промежутки времени. Интуитивно ясно, что если отсчеты отстоят друг от друга на слишком большие интервалы, то при дискретизации может произойти потеря информации: важные изменения сигнала могут быть "пропущены" преобразователем, если они произойдут не в те моменты, когда были взяты отсчеты. Получается, что отсчеты следует брать с максимальной частотой. Естественным пределом служит быстродействие преобразователя. Кроме того, чем больше отсчетов приходится на единицу времени, тем больший размер памяти необходим для хранения информации.

Проблема отыскания разумного компромисса между частотой взятия отсчетов сигнала и расходованием ресурсов трактов преобразования и передачи информации возникла задолго до того, как на свет появились первые звуковые карты. В результате исследований было сформулировано правило, которое принято называть теоремой Найквиста – Котельникова.

Если поставить перед собой задачу обойтись без формул и использования серьезных научных терминов типа "система ортогональных функций", то суть теоремы Найквиста – Котельникова можно объяснить следующим образом. Сигнал, представленный последовательностью дискретных отсчетов, можно вновь преобразовать в исходный (непрерывный) вид без потери информации только в том случае, если интервал межу соседними отсчетами не превышает половины периода самого высокочастотного колебания, содержащегося в спектре сигнала.

Из сказанного следует, что восстановить без искажений можно только сигнал, спектр которого ограничен некоторой частотой Fmax. Теоретически все реальные сигналы имеют бесконечные спектры. Спектры реальных сигналов, хотя и не бесконечны, но могут быть весьма широкими. Для того чтобы при дискретизации избежать искажений, вызванных этим обстоятельством, сигнал вначале пропускают через фильтр, подавляющий в нем все частоты, которые превышают заданное значение Fmax, и лишь затем производят дискретизацию. Согласно теореме Найквиста – Котельникова частота дискретизации, с которой следует брать отсчеты, составляет Fд = 2Fmax. Теорема получена для идеализированных условий. Если учесть реальные свойства сигналов и устройств преобразования, то частоту дискретизации следует выбирать с некоторым запасом по сравнению со значением, полученным из предыдущего выражения.

В стандарте CD Digital Audio частота дискретизации равна 44.1 кГц. Для цифровых звуковых магнитофонов (DAT) стандартная частота дискретизации составляет 48 кГц. Звуковые карты, как правило, способны работать в широком диапазоне частот дискретизации.

В последнее время становится все более популярным стандарт DVD-audio, где частота дискретизации может быть равной 44.1/48/88.2/96 кГц, разрешающая способность 16/20/24 бит, количество каналов – до 6.

Цифроаналоговое преобразование

Для воспроизведения звукового сигнала, записанного в цифровой форме, необходимо преобразовать его в аналоговый сигнал.

Цифроаналоговое преобразование в общем случае происходит в два этапа. На первом этапе из потока цифровых данных с помощью цифро-аналогового преобразователя выделяют отсчеты сигнала, следующие с частотой дискретизации. На втором этапе путем сглаживания (интерполяции) из дискретных отсчетов формируется непрерывный во времени аналоговый сигнал.

На выходе простейшего ЦАП сигнал представляет собой последовательность узких импульсов, имеющих многочисленные высокочастотные спектральные компоненты. На аналоговый фильтр в этом случае возлагается задача полностью пропустить сигнал нужного частотного диапазона (например, 20 Гц – 20 кГц) и по возможности наиболее полно подавить ненужные высокочастотные компоненты. К сожалению, аналоговому фильтру выполнить такие противоречивые требования не под силу. Поэтому цифровой сигнал сначала интерполируют, то есть вставляют дополнительные отсчеты, вычисленные по специальным алгоритмам, и тем самым резко увеличивают частоту дискретизации. При этом исходный спектр полезного сигнала не искажается, а сигнал оказывается дискретизированным на значительно более высокой частоте. Это приводит к тому, что побочные спектральные компоненты на выходе ЦАП далеко отстоят от частотных компонентов основного сигнала и, чтобы отфильтровать их, достаточно простого аналогового фильтра.

После первого этапа цифроаналогового преобразования информация о величине звукового сигнала имеется только в определенные моменты, соответствующие частоте дискретизации АЦП. Дополнительная информация о форме сигнала между отсчетами отсутствует. Задачей второго этапа цифро-аналогового преобразования является восстановление значения сигнала между отсчетами, или интерполяция.

Наибольшее распространение получили линейные методы интерполяции формы сигнала по его дискретным отсчетам, основанные на использовании цифровых фильтров. В исходную последовательность отсчетов сигнала вставляются дополнительные нулевые отсчеты. Новая полученная последовательность подается на интерполирующий цифровой фильтр, в котором нулевые отсчеты преобразуются в очень точно реконструированные отсчеты исходного сигнала. Затем для сглаживания и окончательного восстановления сигнал подается на простой аналоговый фильтр. Полученный в результате цифроаналогового преобразования звуковой сигнал, как правило, попадает в микшер звуковой карты.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.