Многопроцессорные архитектуры
Доступ к шине регулируется арбитром шины. Практически применяются две основные стратегии арбитража – приоритетная, когда устройство, имеющее высокий приоритет, всегда получает доступ, в том числе и при наличии запросов от низкоприоритетных устройств, и справедливая (fair), когда арбитр гарантирует всем устройствам доступ к шине в течение некоторого количества циклов.
Системы шинной архитектуры просты в проектировании и реализации, к ним легко подключать новые устройства и типы устройств, поэтому такая архитектура получила широкое распространение. Однако, особенно в многопроцессорных системах, шина часто является одним из основных ограничителей производительности. Повышение пропускной способности шины зачастую возможно, но приводит к повышению обшей стоимости системы.
Впрочем, при большом количестве узлов проблемы возникают и у систем со столь высокоскоростной шиной, как FirePane. Кроме того, по мере роста физических размеров системы, становится необходимо принимать во внимание физическую скорость передачи сигналов – как сигналов самой магистрали, так и запросов к арбитру шины и его ответов. Поэтому шинная топология соединений при многих десятках и сотнях узлов оказывается.неприемлема, и применяются более сложные топологии.
Системы NUMA-Q
Многопроцессорные серверы IBM NUMA-Q состоят из отдельных процессорных модулей. Каждый модуль имеет собственную оперативную память и четыре процессора х86. Модули называются quad (четверки) (рис. 6.4).
Рис. 6.4. NUMA-Q с тремя четырехпроцессорными модулями
Четверки соединены высокоскоростными каналами IQ-Link с центральным коммутатором. Замена общей шины на звездообразную топологию с центральным коммутатором позволяет решить проблемы арбитража доступа к шине, в частности, устранить задержки при запросе к арбитру шины и ожидании его ответа запрашивающему устройству. NUMA-системы фирмы IBM могут содержать до 16 четверок, т. е. до 64 процессоров.
Архитектура позволяет также включать в эти системы процессоры с архитектурой, отличной от х86, например RS/6000 и System/390, позволяя, таким образом, создать в пределах одной машины гетерогенную сеть со сверхвысокоскоростными каналами связи.
При большем числе модулей применяются еще более сложные топологии, например гиперкубическая. В таких системах каждый узел обычно также содержит несколько процессоров и собственную оперативную память (рис. 6.5).
Рис. 6.5. Гиперкубы с 4, 8 и 16-ю вершинами