Определение истинной величины плоской фигуры. Построение разверток поверхностей.
Определение истинной величины плоской фигуры можно осуществить путем преобразования чертежа способом замены плоскостей проекций. На рис. 146, а дан комплексный чертеж прямоугольника ABCD. Ни одна из проекций прямоугольника не занимает частного положения. Задачу решаем последовательным решением третьей и четвертой основных задач. Заменив плоскость П2 на П 4, приводим прямоугольник в частное положение, т. е. в виде проецирующей по отношению к П4 – Выполнив вторую замену, то есть замену П4 на П5, определяем истинную величину прямоугольника ABC.
Задачу определения истинной величины прямоугольника можно также решить способом вращения вокруг линии уровня плоскости этой фигуры до совмещения с соответствующей плоскостью уровня (рис. 146, б).
В ряду рассматриваемых задач может быть также решена задача на определение истинной величины фигуры сечения поверхности проецирующей плоскостью. В этом случае достаточно одной замены плоскостей проекций (исходная задача 3). В этом случае истинную величину фигуры сечения можно легко построить путем непосредственного замера расстояний точек фигуры "вдоль сечения" и "поперек сечения" (рис. 147).
Длина фигуры сечения АВ изображается в истинную величину на плоскости П2, так как является отрезком фигуры фронтали секущей плоскости. Расстояние между симметричными точками "поперек сечения" изображается в натуральную величину на плоскости П1 так как является отрезками горизонталей секущей плоскости Sum.
Построение разверток поверхностей
При изготовлении различных конструкций и изделий из листового материала имеет большое значение построение разверток поверхностей. Если представить себе поверхность как гибкую нерастяжимую пленку, то некоторые из них путем изгиба можно совместить с плоскостью без разрывов и деформаций. Такие поверхности относятся к развертывающимся, а полученную в результате развертывания поверхности плоскую фигуру называют разверткой этой фигуры. Те поверхности, которые нельзя совместить без разрывов и деформаций, относятся к неразвертываемым (см. § 45).
В практике возникает необходимость изготовления из листового железа не только развертывающихся плоскостей. Теоретически точно развертываются только гранные поверхности, торсы, конические или цилиндрические поверхности. При развертывании конических и цилиндрических поверхностей общего вида в практике их аппроксимируют вписанными гранными поверхностями. В этом случае чем больше граней содержит вписанная поверхность, тем точнее ее развертка. Построенные таким образом развертки поверхностей называют приближенными.
Чтобы построить развертки неразвертывающихся поверхностей, эти поверхности разбивают на части, которые можно приближенно заменить развертывающимися поверхностями. После этого строят развертки этих частей, которые в сумме дают условную развертку неразвертывающейся поверхности.