Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по MatLab

Ориентация на матричные операции

Напомним, что двумерный массив чисел или математических выражений принято называть матрицей. А одномерный массив называют вектором. Примеры векторов и матриц даны ниже.

Вектор из 4 элементов:

{1, 2, 3, 4}

Матрица размера 3x4:

1 2 3 4
5 6 7 8
9 8 7 6

Матрица с элементами разного типа:

a a+b a+b/c
x y*x z
1 2 3

Векторы и матрицы характеризуются размерностью и размером. Размерность определяет структурную организацию массивов в виде строки (размерность 1), страницы (размерность 2), куба (размерность 3) и т. д. Так что вектор является одномерным массивом, а матрица представляет собой двумерный массив с размерностью 2. MATLAB допускает задание и использование многомерных массивов, но в этой главе мы пока ограничимся только одномерными и двумерными массивами – векторами и матрицами.

Размер вектора – это число его элементов, а размер матрицы определяется числом ее строк т и столбцов п. Обычно размер матрицы указывают как тхп. Матрица называется квадратной, если m = n, то есть число строк матрицы равно числу ее столбцов.

Векторы и матрицы могут иметь имена, например V – вектор или М – матрица. В данном самоучителе имена векторов и матриц набираются полужирным шрифтом. Элементы векторов и матриц рассматриваются как индексированные переменные, например:

  • V 2 – второй элемент вектора V;
  • М 23 – третий элемент второй строки матрицы М.

Система MATLAB выполняет сложные и трудоемкие операции над векторами и матрицами даже в режиме прямых вычислений без какого-либо программирования. Ею можно пользоваться как мощнейшим калькулятором, в котором наряду с обычными арифметическими и алгебраическими действиями могут использоваться такие сложные операции, как инвертирование матрицы, вычисление ее собственных значений и принадлежащих им векторов, решение систем линейных уравнений, вывод графиков двумерных и трехмерных функций и многое другое.

Интересно отметить, что даже обычные числа и переменные в MATLAB рассматриваются как матрицы размера 1x1, что дает единообразные формы и методы проведения операций над обычными числами и массивами. Данная операция обычно называется векторизацией. Векторизация обеспечивает и упрощение записи операций, производимых одновременно над всеми элементами векторов и матриц, и существенное повышение скорости их выполнения. Это также означает, что большинство функций может работать с аргументами в виде векторов и матриц. При необходимости вектора и матрицы преобразуются в массивы, и значения вычисляются для каждого их элемента.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.