Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по MatLab

Матричные операции линейной алгебры

  • Вычисление нормы и чисел обусловленности матрицы

    Линейная алгебра – область, в которой наиболее часто используются векторы и матрицы. Наряду с операциями общего характера, рассмотренными выше, применяются функции, решающие наиболее характерные задачи линейной алгебры. Они и рассмотрены в данном уроке.
  • Определитель и ранг матрицы. Определение нормы вектора.

    Для нахождения определителя (детерминанта) и ранга матриц в MATLAB имеются следующие функции: | det(X) – возвращает определитель квадратной матрицы X. Если X содержит только целые элементы, то результат – тоже целое число.
  • Определение ортонормированного базиса матрицы

    Вычисление ортонормированного базиса матрицы обеспечивают нижеприведенные функции: | В = orth(A) – возвращает ортонормированный базис матрицы А. Столбцы В определяют то же пространство, что и столбцы матрицы А, но столбцы В ортогональны, то есть B*B=eye(rank(A)).
  • Функции приведения матрицы к треугольной форме

    Треугольной называется квадратная матрица А, если при I>k (верхняя треугольная матрица) или при к>I(нижняя треугольная матрица) элементы матрицы A(l,k) равны нулю. В строго треугольной матрице нули находятся и на главной диагонали.
  • Определение угла между двумя подпространствами

    Угол между двумя подпространствами вычисляет функция subsрасе: | theta = subspace(A.B) – возвращает угол между двумя подпространствами, натянутыми на столбцы матриц А и В. Если А и В – векторы-столбцы единичной длины, то угол вычисляется по формуле acos(A'*B).
  • Разложение Холецкого

    Разложение Холецкого – известный прием матричных вычислений. Функция chol находит это разложение для действительных и комплексных эрмитовых матриц. | R = chol(X) – для квадратной матрицы [Положительно определенной называется действительная симметрическая матрица, все собственные значения которой положительны.
  • Обращение матриц. Функции inv, pinv.

    Обращение матриц – одна из наиболее распространенных операций матричного анализа. Обратной называют матрицу, получаемую в результате деления единичной матрицы Е на исходную матрицу X. Таким образом, Х^-1=Е/Х. Следующие функции обеспечивают реализацию данной операции:
  • LU- и QR-разложения

    Так называемые LU- и QR-разложения реализуются следующими матричными функциями: | Функция lu выражает любую квадратную матрицу X как произведение двух треугольных матриц, одна из которых (возможно, с перестановками) – нижняя треугольная матрица, а другая – верхняя треугольная матрица [В MATLAB 6 аргументом (входным аргументом) функции lu может быть и полная прямоугольная матрица. – Примеч. ред.].
  • Вычисление собственных значений и сингулярных чисел

    Во многих областях математики и прикладных наук большое значение имеют средства для вычисления собственных значений (собственных чисел, характеристических чисел, решений векового уравнения) матриц, принадлежащих им векторов и сингулярных чисел.
  • Приведение матриц к форме Шура и Хессенберга

    Ниже приводятся функции, обеспечивающие приведение матриц к специальным формам Шура и Хессенберга: | cdf2rdf – преобразование комплексной формы Шура в действительную.
Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.