Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по введению в экспертные системы

Литература

C

Cannon H. I. (1982). FLAVORS: a non-hierarchical approach to object-oriented programming. Unpublished paper.

Carbonell J. G., Michalski R .and Mitchell T. (1983). An overview of machine learning. In Machine Learning (Michalski R. S., Carbonell J. S .and Mitchell Т. М., eds.), Chapter 1. Palo Alto, CA: Tioga.

Carver N .and Lesser V. (1994). The evolution of blackboard control architectures. In Expert Systems with Applications: Special Issue on the Blackboard Paradigm and its Applications, 7(1), p. 1-30.

Cendrowska J .and Bramer M. (1984). Insdie an expert system: A rational reconstruction of the MYCIN consultation system. In Artificial Intelligence: Tools, Techniques and Applications (O'Shea T .and Eisenstadt M., eds.). Chapter 15. New York: Harper and Row.

Chandrasekaran B. (1983). Towards a taxonomy of Problem solving types. Al Magazine, 4(1), Spring, p. 9-17.

Chandrasekaran B. (1984). Expert systems: matching techniques to tasks. In Artificial Intelligence Applications for Business (Reitman W, eds.). Norwood, NJ: Ablex.

Chandrasekaran B. (1986). Generic tasks in knowledge-based reasoning: high-level building blocks for expert systems design. IEEE Expert, 1(3), p. 23-30.

Chandrasekaran B. (1988). Generic tasks as building blocks for knowledge-based systems: the diagnosis and routine design examples. Knowledge Engineering Review, 3(3), p. 183-210.

Chandrasekaran B .and Mittal S. (1984). Deep versus compiled knowledge approaches to diagnostic problem solving. In Developments in Expert Systems (Coombs M. J., eds.), Chapter 2. London; Academic Press.

ChappellD. (1996). Understanding ActiveX and Ole. Microsoft Press.

Charniak E .and McDermott D. (1985). Introduction to Artificial Intelligence. Reading, MA: Addison-Wesley.

Charniak E., Reisbeck C .and McDermott D. (1987). Artificial Intelligence Programming, 2nd ed. Hillsdale, NJ: Lawrence Eribaum.

Cheeseman P. (1985). In defense of Probability. In Proc. 8th InternationalJoint Conference on Artificial Intelligence, p. 1002-1009.

Church A. (1941). The Calculi of Lambda Conversion. Annals of Mathematics Studies, Princeton University Press.

Clancey W. J. (1983). The epistemology of a rule-based expert system: a framework for explanation. Artificial Intelligence, 10, p. 215-251.

Clancey W. J. (1985). Heuristic classification. Artificial Intelligence, 27, p. 289-350.

Clancey W. J. (1987, a). Knowledge-Based Tutoring, The GUIDON Program. Cambridge, MA: MIT Press.

Clancey W. J. (1987, b). Intelligent tutoring systems: a tutorial survey. In van Lamsweerde and Dufour (1987), Chapter 3.

Clancey W. J. (1987, c). From GUIDON to NEOMYCIN and HERACLES in twenty short lessons, In Current Issues in Expert Systems (van Lamsweerde A .and Dufour P., eds., Chapter 4. London: Academic Press.

Clancey W. J. (1993, a). Notes on "Heuristic Classification". Artificial Intelligence, 59, p. 191-196.

Clancey W. J. (1993, b). Notes on "Epistemology of a rule-based expert system". Artificial Intelligence, 59, p. 197-204.

Clancey W. J .and Letsinger R. (1984). NEOMYCIN: reconfiguring a rule-based expert system for application to teaching. In Readings in Medical Artificial Intelligence (Clancey W. J .and Shortliffe E. H., eds.). Chapter 15. Reading, MA: Addison-Wesley.

Clancey W. J .and Shortliffe E. H., eds. (1984). Readings in Medical Artificial Intelligence. Reading, MA: Addison-Wesley.

Clark K. L .and McCabe F. (1982). PROLOG: a language for implementing expert systems. In Machine Intelligence 10 (Hayes J. E., Michie D .and Pao Y. H., eds.). Chichester, UK: Ellis Horwood.

Clark K. L .and Tarnlund S.-A., eds. (1982). Logic Programming, London: Academic Press.

Cohen P .and Feigenbaum E. A., eds. (1982). The Handbook of Artificial Intelligence, Vol. 3. Los Altos, CA: Morgan Kaufinann.

Collins A. M .and Quillian M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8, p. 240-247.

Coombs M. J., eds. (1984). Developments in Expert Systems. London: Academic Press.

Cooper G. F. (1990). The computational complexity of probabilistic inference using Bavesian belief networks. Artificial Intelligence, 42, p. 393-405.

Corkill D. D. (1991). Blackboard systems. Al Expert, 6(9), p. 40-47.

Coyne R, (1988). Logic Models of Design. London: Pitman.

Cox R. (1946). Probability frequency and reasonable expectation. American Journal of Physics, 14(1), p. 1-13.

Craig I. (1995). Blackboard Systems. Norwood, NJ: Ablex.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.