Иллюстрированный самоучитель по Mathematica 5

Факторизация дробей

Этот макрос преобразует представление:

{{-1,n},{2,-1},{-3,-m},{5,-1},{7,-1},{11,-1}, {13,-1},{31,-1},
{61,-1},{2003.1},{5549927.8},{109317926249509865753025015237911.1}}

В такой более привычный вид:

(-1)n х2-1х(-3)-m х5-1 х7-1 х11-1х13-1 х31-1 х
61-1 x2003x55499278Х109317926249509865753025015237911
.

Теперь, пользуясь результатами и макросом, можем составить таблицу. Если нужно разложить только, например, числители, можно воспользоваться следующей программой:

Do: [Print[n, ":", Factorlnteger[Numerator[BernoulliB[n]]]], {n, 2.102.2}]

Так как это разложение играет чрезвычайно важную роль в доказательстве Последней теоремы Ферма, представим его, как обычно, в виде таблицы.

Эта таблица заслуживает внимания. Прежде всего нужно заметить, она может оказать неоценимую помощь при поиске больших иррегулярных чисел. (Напомню, что простое число р называется регулярным, если на него не делится ни один из числителей чисел Бернулли В2, В4,…, Вp-3. В противном случае простое число называется иррегулярным.) Иррегулярные простые числа долгое время были причиной ужасных неприятностей для всех, кто занимался доказательством Последней теоремы Ферма. Дело в том, что для регулярных чисел эта теорема была доказана Куммером еще в 1850 году. Это было настоящее торжество ферматистов! Наиболее отчаянные предположили даже, что число иррегулярных чисел конечно, и, таким образом, им оставалось якобы рассмотреть лишь конечное число случаев! Нужно заметить, что их предположение не было лишено оснований.

Действительно, в пределах первой сотни есть всего лишь три иррегулярных числа: 37, 59 и 67. (В этом легко убедиться, просмотрев составленную нами таблицу.) Однако в 1915 году Иенсен довольно просто доказал, что множество иррегулярных чисел бесконечно. Тогда-то ферматисты занялись изучением иррегулярных чисел вплотную. В 1965 году Эйхлер существенно продвинулся в поисках доказательства Последней теоремы Ферма, а десять лет спустя, в 1975 году, Брюкнер ввел индекс иррегулярности числа р – количество числителей чисел Бернулли В2, В4,…, В^, делящихся на р, – и тем самым придал результатам Эйхлера вполне обозримую форму. Понятно, что интерес к таблицам, подобным составленной нами (не без помощи системы Mathematica), значительно возрос.

Однако даже в 1985 году, после очередного всплеска интереса к Последней теореме Ферма, когда она была доказана для "почти всех" натуральных показателей, таблица, помещенная в одном из лучших университетских учебников по теории чисел – в учебнике 3. И. Боревича и И. Р. Шафаревича, была доведена лишь до п = 60. Так что едва ли будет преувеличением утверждение, что с помощью системы Mathematica мы составили таблицу, о которой несколько поколений ферматистов могли только мечтать!

Кроме того, эта таблица поможет нам понять, как система Mathematica обращается с дробями. Если число дробное (а именно такими и являются числа Бернулли с четными индексами), то знак дроби относится к числителю. В этом легко убедиться, просмотрев нашу таблицу. Действительно, как мы видели из таблицы разложения чисел Бернулли Вn на простые множители, числа B4n-1 отрицательны, а числа B4n-2 положительны. Точно так же распределены и знаки числителей в таблице разложения числителей чисел Бернулли Вn.

Итак, с помощью функции FactorInteger можем разлагать на простые множители не только натуральные и отрицательные числа, но и дроби, – иными словами, все рациональные числа. Таким образом, кажется, мы научились применять эту функцию ко всем числам, к которым применимо понятие разложения на простые множители. Но возможности этой функции шире. Она умеет еще кое-что. "Как? Неужели… Разве это мыслимо, разлагать на множители комплексные числа?", – возможно, подумаете вы. И не ошибетесь!

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.