Совершенствование стратегий. Уроки проекта GUIDON.
Работа инженера по знаниям отнюдь не заканчивается после того, как эвристические знания будут представлены в виде исходного набора порождающих правил. И исследователи, и практики давно пришли к выводу, что процесс дальнейшего совершенствования базы знаний не уступает по сложности процессу создания ее первой версии. Существует довольно большой круг проблем, связанных как с обслуживанием большого набора правил, так и с дальнейшим уточнением их на базе опыта, полученного в процессе эксплуатации системы.
Только часть из этих проблем может быть решена с помощью таких инструментальных средств извлечения знаний, как система MORE. Создается впечатление, что некоторые аспекты этих проблем являются следствием применения подхода, базирующегося на правилах, а потому требуется определенное переосмысление способов организации набора правил. В этом разделе мы попытаемся провести краткий обзор существующих на сегодняшний день мнений на этот счет.
В своей работе [Clancey, 1983] Кленси раскритиковал использование неструктурированного набора порождающих правил в экспертных системах, основываясь в основном на опыте адаптации системы MYCIN для учебных целей в ходе выполнения проекта GUIDON. Описание этого проекта можно найти в работе [Clancey, 1987, а]. Главный аргумент Кленси состоит в том, что единообразный синтаксис правил в виде выражений "если… то" скрывает тот факт, что такие правила часто выполняют совершенно различные функции и соответственно должны конструироваться по-разному.
При нынешней постановке вопроса определенные структурные и стратегические решения, касающиеся представления знаний о предметной области, присутствуют в наборе правил неявно, а потому недоступны для коррекции или анализа в явном виде.
Мы уже видели, что порождающие правила в обобщенной форме могут быть интерпретированы следующим образом: если предпосылки Р1 и… и Рт верны, то выполнить действия Q1 и… и Qn.
Порядок перечисления предпосылок Рi не имеет значения, поскольку Р1 ^ P2 эквивалентно P2^P1 в любой стандартной логике. Однако порядок перечисления предпосылок влияет на процедурную интерпретацию таких правил, поскольку он материализуется в логическом программировании. Различные варианты упорядочения в совокупности могут породить совершенно различные виды пространства поиска, которые будут анализироваться по-разному, как мы это уже видели в главе 8.
Аналогично, порядок применения правил для достижения определенной цели будет влиять на порядок формирования подцелей. Можно с уверенностью утверждать, что такой механизм разрешения конфликтов, при котором первыми будут выполняться наиболее предпочтительные правила, в большинстве случаев позволит намного сократить процесс поиска.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
Проблема состоит в том, что критерии, по которым можно было бы упорядочить правила и логические фразы, представлены в наборе правил в неявном виде. Знания о том, какое правило следует применить первым и в каком порядке анализировать члены совокупности предпосылок в правиле, являются, по существу, метазнаниями, т.е. знаниями о том, как применять знания. Вряд ли кто-нибудь будет спорить с тем, что такие знания имеют важнейшее значение для правильного функционирования экспертной системы, а получить их от эксперта и представить в удобном виде в программе чрезвычайно трудно.
Кленси утверждал, что система, основанная на правилах, нуждается в эпистемологической оболочке, которая каким-то образом придает смысл специфическим знаниям о предметной области. Другими словами, правила логического вывода, имеющие отношение к определенной предметной области, часто оказываются неявно включены в более абстрактные знания. Лучший способ объяснить эту мысль – воспользоваться примером, описанным Кленси. Рассмотрим следующее правило:
ЕСЛИ: 1) заражение – менингит, 2) доступны только косвенные свидетельства, 3) тип инфекции – бактериальный, 4) пациент принимает кортикостероиды, ТО: имеются основания предполагать наличие таких микроорганизмов e.coli (.4) klebsiella-pneumoniae (.2) или pseudomonas-aeruginosa (.1).
Порядок перечисления предпосылок (конъюнктов) в этом правиле исключительно важен. Обычно стараются сначала сформулировать гипотезу относительно природы инфекции (предпосылка 1), а затем решать, являются ли свидетельства, относящиеся к этой гипотезе, косвенными или нет (предпосылка 2). Бактериальный менингит– это подкласс, отличный от вирусного менингита, и, следовательно, предпосылку 3 можно рассматривать как уточнение предпосылки 1. И наконец, решение отложить проверку предпосылки 4 можно, вероятно, отнести к категории стратегических. Если сделать эту последнюю предпосылку первой в правиле, то пространство поиска будет иметь совершенно другой вид, причем возможным следствием такого изменения будет отбрасывание всех последующих проверок, если эта даст отрицательный результат.
Процесс представления знаний приводит к тому, что знания становятся явными, но порождающие системы оставляют множество общих принципов управления поиском представленными в неявном виде. Возможно, этим и объясняется тот факт, что добавление или удаление правил из существующего набора иногда дает совершенно неожиданный эффект. Декларативная интерпретация правил на "человеческом" языке подводит нас к одному выводу, а процедурная интерпретация этих же правил в системе может дать совершенно иной результат.
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
Кленси предложил довольно привлекательную методику анализа разных видов знаний, выполнение которого может быть возложено на эпистемологическую оболочку системы, основанной на правилах. Предлагается выделить такие компоненты знаний: структурные, стратегические и поддерживающие.
- Структурные знания состоят из абстрактных категорий разных уровней, посредством которых представляются знания о предметной области. Таксономия – это, возможно, один из самых очевидных примеров источника таких знаний, которые обычно явно представляются в виде порождающих правил. Знание, что менингит – это заражение, которое может быть острым либо хроническим, бактериальным или вирусным и т.д., неявно представляется в предпосылках многих правил.
- Стратегические знания – это знания о том, как выбрать порядок применения методов или выбора подцелей, который минимизировал бы объем работы, необходимый для поиска' в пространстве решений. Например, правило, которое гласит, что пациент, склонный к определенной патологии (например, алкоголик), может с большей вероятностью иметь необычную этиологию, должно побудить эксперта первым делом обратить внимание на менее обычные причины заражения. Такие знания обычно используются в сочетании со структурными знаниями. Например, такая эвристика может быть связана скорее с бактериальным менингитом, чем с вирусным.
- Поддерживающие знания – это знания, которые содержатся в причинно-следственной модели предметной области и которые объясняют, почему в этой предметной области имеют место определенные необычные явления. Так, в системе MYCIN имеется правило, которое связывает употребление стероидов с наличием грамотрицательных микроорганизмов в форме палочек, которые могут вызвать бактериальный менингит. В основе этого правила лежит тот факт, что стероиды ослабляют иммунную систему. К тому же такие знания увязываются со структурными знаниями, касающимися классификации заболеваний и классификации микроорганизмов.
Очевидно, что большая часть таких фундаментальных знаний не представлена в явном виде в порождающих правилах. Структурные знания лучше всего представляются в форме составных объектов данных, таких как фреймы, но некоторая часть управляющей информации может быть представлена в процедурном виде. Поддерживающие знания, как правило, включаются в сопроводительную документацию к программе, но они должны быть доступны и для программы, формирующей объяснения сделанных заключений.
Попытка "втиснуть" разнородные знания в единый формат представления отрицательно сказывается на ясности и прозрачности системы для пользователя, но, тем не менее, позволяет весьма изобретательно использовать эффект от рационального выбора способа упорядочения правил и предпосылок.