Пространство версий
В этом разделе мы рассмотрим одну из методик обучения, которая получила в литературе наименование пространство версий (version space) [Mitchell, 1978], [Mitchell, 1982], [Mitchell, 1997]. Эта методика была реализована во второй версии системы Meta-DENDRAL. При выводе общего правила масс-спектрометрии из набора примеров, демонстрирующих, как определенные молекулы расщепляются на фрагменты, в этой версии Meta-DENDRAL интенсивно используется механизм обучения концептам, о котором мы рассказывали выше. В работе [Mitchell, 1978] так формулируется проблема обучения концептам.
"Концепт можно представить как образец, который обладает свойствами, общими для всех экземпляров этого концепта. Задача состоит в том, чтобы при заданном языке описания образцов концептов и наличии обучающей выборки – наборе позитивных и негативных экземпляров целевого концепта и способе сопоставления данных из обучающей выборки и гипотез описания концепта – построить описание концепта, совместимого со всеми экземплярами в обучающей выборке".
В этом контексте "совместимость" означает, что сформированное описание должно охватывать все позитивные экземпляры и не охватывать ни один негативный экземпляр.
Для того чтобы "рассуждать" о правилах, касающихся масс-спектрометрии, система Meta-DENDRAL должна располагать языком представления концептов и отношений между ними в этой предметной области. В Meta-DENDRAL это объектно-ориентированный язык (см. главу 6), который описывает сеть с помощью узлов и связей между ними. Узлы представляют атомы в структуре молекулы, а связи – химические связи в молекуле. В этом языке некоторый экземпляр в обучающей выборке соответствует образцу в том случае, если сопоставимы все их узлы и связи и удовлетворяются все ограничения, специфицированные в описании образца.
В контексте проблемы обучения концептам пространство версий есть не что иное, как способ представления всех описаний концептов, совместимых в оговоренном выше смысле со всеми экземплярами в обучающей выборке. Главное достоинство использованной Митчеллом (Mitchell) методики представления и обновления пространств версий состоит в том, что версии могут строиться последовательно одна за другой, не оглядываясь на ранее обработанные экземпляры или ранее отвергнутые гипотезы описаний концептов.
Митчелл отыскал ключ к решению проблемы эффективного представления и обновления пространств версий, заметив, что пространство поиска допустимых описаний концептов является избыточным. В частности, он пришел к выводу, что можно выполнить частичное упорядочение образцов, сформированных описаниями концептов. Самым важным является отношение "более специфичный чем или равный", которое формулируется следующим образом.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
"Образец Р1 более специфичен или равен образцу Р2 (это записывается в форме Р2 =< Р2) тогда и только тогда, когда Р1 сопоставим с подмножеством всех образцов, с которыми сопоставим образец Р2".
Рассмотрим следующий простой пример из обучающей программы для "мира блоков" [Winston, 1975, а]. На рис. 20.1 образец Р1 более специфичен, чем образец Р2, поскольку ограничения, специфицированные в образце Р1, удовлетворяются только в том случае, если удовлетворяются более слабые ограничения, специфицированные в образце Р2. Можно посмотреть на эту пару образцов и с другой точки зрения: если в некотором экземпляре удовлетворяются ограничения, специфицированные в образце Р1, то обязательно удовлетворяются и условия, специфицированные в образце Р2, но не наоборот.
Рис. 20.1. Отношения между образцами
Обратите внимание на следующий нюанс. Для того чтобы программа смогла выполнить упорядочение представленных образцов, она должна быть способна разобраться в смысле множества понятий и отношений между ними, которые специфичны для данной предметной области.
- Программа должна понимать, что если В – это "брусок", то, значит, В – это одновременно и "объект произвольной формы", т.е. в программу должны быть заложены определенные критерии, которые помогут ей выделить категории сущностей, представленных узлами в языке описания структуры образцов.
- Программа должна знать, что если А "поддерживает" В, то, следовательно, А "касается" В в мире блоков, т.е. программа должна обладать способностью разобраться в избыточности отношений между объектами в предметной области.
- Программа должна понимать логический смысл таких терминов, как "не", "любой" и "или", и то как они влияют на ограничения или разрешения в процессе сопоставления образцов.
Все эти знания необходимы программе для того, чтобы она смогла сопоставить образец Р1 с Р2, т.е. узлы и связи в одном образце с узлами и связями в другом, и выяснить, что любое ограничение, специфицированное в Р1, является более жестким, более специфичным, чем соответствующее ему ограничение в образце Р2. Если программа сможет во всем этом разобраться, то открывается путь к представлению пространств версий в терминах большей "специфичности" или большей "общности" образцов в этом пространстве. Тогда программа может рассматривать некоторое пространство версий как содержащее:
- множество максимально специфических образцов;
- множество максимально обобщенных образцов;
- все описания концептов, которые находятся между этими двумя крайними множествами.
Все это в совокупности называется представлением пространств версий граничными множествами (boundary sets). Такое представление, во-первых, компактно, а во-вторых, легко обновляется. Оно компактно, поскольку не хранит в явном виде все описания концептов в данном пространстве. Его легко обновлять, так как определение нового пространства можно выполнить перемещением одной или обеих границ.