Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по введению в экспертные системы

Алгоритм формирования дерева решений по обучающей выборке

Ниже будет описан алгоритм формирования дерева решений по обучающей выборке, использованный в системе IDЗ. Задача, которую решает алгоритм, формулируется следующим образом. Задано:

  • множество целевых непересекающихся классов {С1, С2,…, Сk};
  • обучающая выборка S, в которой содержатся объекты более чем одного класса.

Алгоритм использует последовательность тестовых процедур, с помощью которых множество 5 разделяется на подмножества, содержащие объекты только одного класса. Ключевой в алгоритме является процедура построения дерева решений, в котором нетерминальные узлы соответствуют тестовым процедурам, каждая из которых имеет дело с единственным атрибутом объектов из обучающей выборки. Как вы увидите ниже, весь фокус состоит в в выборе этих тестов.

Пусть Т представляет любую тестовую процедуру, имеющую дело с одним из атрибутов, а {О1,O2,…,On} – множество допустимых выходных значений такой процедуры при ее применении к произвольному объекту х. Применение процедуры Т к объекту х будем обозначать как Т(х). Следовательно, процедура Т(х) разбивает множество S на составляющие { S1, S2,…, Sn}, такие, что: Si= {x|T(x) = Oi}.

Такое разделение графически представлено на рис. 20.3.

Иллюстрированный самоучитель по введению в экспертные системы › Формирование знаний на основе машинного обучения › Алгоритм формирования дерева решений по обучающей выборке
Рис. 20.3. Дерево разделения объектов обучающей выборки

Если рекурсивно заменять каждый узел Si, на рис. 20.3 поддеревом, то в результате будет построено дерево решений для обучающей выборки S. Как уже отмечалось выше, ключевым фактором в решении этой проблемы является выбор тестовой процедуры – для каждого поддерева нужно найти наиболее подходящий атрибут, по которому можно выполнять дальнейшее разделение объектов.

Квинлан (Quinlan) использует для этого заимствованное из теории информации понятие неопределенности. Неопределенность – это число, описывающее множество сообщений M= { m1, т2,…, тn}. Вероятность получения определенного сообщения mi из этого множества определим как р(тi). Объем информации, содержащейся в этом сообщении, будет в таком случае равен: I(mi) = -logp(mi).

Таким образом, объем информации в сообщении связан с вероятностью получения этого сообщения обратной монотонной зависимостью. Поскольку объем информации измеряется в битах, логарифм в этой формуле берется по основанию 2.

Неопределенность множества сообщений U(M) является взвешенной суммой количества информации в каждом отдельном сообщении, причем в качестве весовых коэффициентов используются вероятности получения соответствующих сообщений: U(М) = -Sumip[ (mi) logp(mi), i = 1,…, п. ]

Интуитивно ясно, что чем большую неожиданность представляет получение определенного сообщения из числа возможных, тем более оно информативно. Если все сообщения в множестве равновероятны, энтропия множества сообщений достигает максимума.

Тот способ, который использует Квинлан, базируется на следующих предположениях.

  • Корректное дерево решения, сформированное по обучающей выборке S, будет разделять объекты в той же пропорции, в какой они представлены в этой обучающей выборке.
  • Для какого-либо объекта, который нужно классифицировать, тестирующую процедуру можно рассматривать как источник сообщений об этом объекте.

Пусть Ni – количество объектов в S, принадлежащих классу Сi. Тогда вероятность того, что произвольный объект с, "выдернутый" из S, принадлежит классу Сi, можно оценить по формуле: p(c~Ci) = Ni/|S|, а количество информации, которое несет такое сообщение, равно: I (с ~ Сi) = -lоg2р(mi) (с ~ Сi) бит.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.