Встроенные операторы и функции
Таблица П3.3. (Продолжение).
Функция | Аргументы | Описание |
---|---|---|
D* (x,par) | x – значение случайной величины; par – список параметров распределения * |
Плотность вероятности со статистикой распределения * |
diag(v) | v – вектор | Диагональная матрица, на диагонали которой находятся элементы вектора |
eigenvals (A) | А – квадратная матрица | Собственные значения матрицы |
eigenvec (A,K) | А – квадратная матрица; K – собственное значение |
Собственный вектор матрицы, соответствующий заданному собственному значению |
eigenvecs (A) | А – квадратная матрица | Собственные векторы матрицы |
erf (x) | х – аргумент | Функция ошибок |
erfc(x) | х – аргумент | Обратная функция ошибок |
error (S) | s – строка | Возвращает строку s как сообщение об ошибке |
exp(z) | z – аргумент | Экспонента в степени z |
expfit (x,y,g) | х, у – векторы данных; g – вектор начальных значений а, b, с |
Регрессия экспонентой аеbх +с |
fft(y), FFT (y) | у – вектор данных | Вектор прямого преобразования Фурье (в разных нормировках) |
fhyper (a,b,c,x) | а, b, с – параметры; х – аргумент, -1<х<1 |
Гауссова гипергеометрическая функция |
Find (x1,x2,…) | x1, х2, … – переменные | Возвращает корень алгебраического уравнения (скаляр) или системы (вектор), определенных в блоке с ключевым словом Given |
floor (x) | х – аргумент | Наибольшее целое число, меньшее или равное х |
Gamma (x), Gamma (a, x) | x – аргумент | Гамма-функция Эйлера или неполная гамма-функция порядка а |
genfit (x,y,g,G) | x, у – векторы данных; g – вектор начальных значений параметров регрессии; G (х, с) – векторная функция, составленная из функции пользователя и ее частных производных по каждому параметру |
Вектор коэффициентов регрессии функциями пользователя общего вида |
geninv (A) | А – матрица | Создание обратной матрицы |
genvals (A, B) | А, в – квадратные матрицы | Расчет обобщенных собственных значений |
genvecs (A, B) | А, в – квадратные матрицы | Расчет обобщенных собственных векторов |
Given | Ключевое слово для ввода систем уравнений, неравенств и т. п. | |
heaviside step(x) | х – аргумент | Функция Хевисайда |
Her (n,x) | х – аргумент; n – порядок |
Полином Эрмита |
I0(x), I1(x), In (m,x) | х – аргумент | Модифицированная функция Бесселя первого рода нулевого, первого и n-го порядка |
ibeta (a, x, y) | х, у – аргументы; а – параметр |
Неполная бета-функция |
identity(N) | N – размер матрицы | Создание единичной матрицы |
icfft(v), ICFFT(v) | v – вектор частотных данных Фурье-спектра | Вектор комплексного обратного преобразования Фурье (в разных нормировках) |
if (cond,x,y) | cond – логическое условие; х, у – значения, возвращаемые, если условие верно (ложно) |
Функция условия |
if ft (v), IFFT(v) | v – вектор частотных данных Фурье-спектра | Вектор обратного преобразования Фурье (в разных нормировках) |
isNaN(x) | x – аргумент | Возвращает 1, если x=NaN но в остальных случаях |
IsString (x) | х – аргумент | Возвращает 1, если х – строка, и 0 в остальных случаях |
iwave (v) | v – вектор частотных данных вейвлет-спектра | Вектор обратного вейвлет-преобразования |
Im(z) | z – аргумент | Мнимая часть комплексного числа |
interp (s,x,y,t) | s – вектор вторых производных; х, у – векторы данных; t – аргумент |
Сплайн-интерполяция |
intercept (x,y) | х, у – векторы данных | Коэффициент b линейной регрессии b+ах |