-
В этой главе рассматриваются численные методы решений задач с начальными условиями (называемых задачами Коши) для обыкновенных дифференциальных уравнений (далее используется сокращение ОДУ).
-
Модели, основанные на задачах Коши для ОДУ, часто называют динамическими системами, подчеркивая, что, как правило, они содержат производные по времени t и описывают динамику некоторых параметров. Проблемы, связанные с динамическими системами, на самом деле весьма разнообразны и зачастую не сводятся к простому интегрированию ОДУ.
-
Для решения ОДУ порядка N>1 в Mathcad предусмотрены две возможности: | вычислительный блок Given/odesolve (начиная с версии 2000) – в этом случае решение имеет вид функции от t; | встроенные функции решения систем ОДУ, причем уравнения высших порядков необходимо предварительно свести к эквивалентной системе уравнений первого порядка, как об этом рассказано в разд.
-
При помощи Mathcad можно решать системы N>1 ОДУ первого порядка, если они записаны в стандартной форме (Коши) в виде векторного соотношения: Y' (t)=F(Y(t),t) (см. разд. 9.1. 1). | В Mathcad имеется несколько встроенных функций, которые позволяют решать задачу Коши различными численными методами.
-
Метод решения ОДУ при помощи встроенных функций rkfixed, Rkadapt или Bulstoer (в противоположность вычислительному блоку Given/odesoive) сохранился с прежних версий Mathcad (до 2000-й).
-
Зачастую при решении дифференциальных уравнений требуется определить значения искомых функций не на всем интервале (t0,t1), а только в одной его последней точке. Например, весьма распространены задачи поиска аттракторов динамических систем.
-
В завершение раздела сделаем несколько важных замечаний относительно выбора численного алгоритма решения ОДУ и задания его параметров. Они не претендуют на общность, но, надеемся, будут весьма полезны читателю, особенно в случае возникновения проблем.
-
До сих пор мы имели дело с "хорошими" уравнениями, которые надежно решались численными методами Рунге-Кутты. Однако имеется класс так называемых жестких (stiff) систем ОДУ, для которых стандартные методы практически неприменимы, поскольку их решение требует исключительно малого значения шага численного метода.
-
Решение жестких систем дифференциальных уравнений можно осуществить только с помощью встроенных функций, аналогичных по действию семейству рассмотренных выше функций для обычных ОДУ: | Radau(y0,t0,t1,M,F) – алгоритм RADAUS для жестких систем ОДУ;
-
Рассмотрим классическую модель химической кинетики (Робертсон, 1966), которая как нельзя лучше передает смысл понятия жесткости ОДУ. | Попытка решения стандартными методами | Рассмотрим составную схему химического взаимодействия трех веществ.
-
В предыдущих разделах было использовано в качестве примера в основном линейное уравнение осциллятора (оно содержало только первую степень неизвестных функций и их производных). Между тем многие нелинейные уравнения демонстрируют совершенно удивительные свойства, причем решение большинства из них можно получить лишь численно.
-
Рассмотрим решение уравнения Ван дер Поля, описывающего электрические колебания в замкнутом контуре, состоящем из соединенных последовательно конденсатора, индуктивности, нелинейного сопротивления и элементов, обеспечивающих подкачку энергии извне (листинг 9.14).
-
Одна из самых знаменитых динамических систем предложена в 1963 г. Лоренцем в качестве упрощенной модели конвективных турбулентных движений жидкости в нагреваемом сосуде тороидальной формы. Система состоит из трех ОДУ и имеет три параметра модели (листинг 9.15).
-
До сих пор в этой главе в качестве примеров расчета динамических систем мы приводили графики 1-3 траекторий на фазовой плоскости. Однако для надежного исследования фазового портрета необходимо решить систему ОДУ большое количество раз с самыми разными начальными условиями (и, возможно, с разным набором параметров модели), чтобы посмотреть, к каким аттракторам сходятся различные траектории.