Иллюстрированный самоучитель по MathCAD 12

Автоколебания

Рассмотрим решение уравнения Ван дер Поля, описывающего электрические колебания в замкнутом контуре, состоящем из соединенных последовательно конденсатора, индуктивности, нелинейного сопротивления и элементов, обеспечивающих подкачку энергии извне (листинг 9.14). Неизвестная функция времени y(t) имеет смысл электрического тока, а в параметре µ заложены количественные соотношения между составляющими электрической цепи, в том числе и нелинейной компонентой сопротивления.

Листинг 9.14. Модель Ван дер Поля:

Иллюстрированный самоучитель по MathCAD 12 › Обыкновенные дифференциальные уравнения: динамические системы › Автоколебания

Иллюстрированный самоучитель по MathCAD 12 › Обыкновенные дифференциальные уравнения: динамические системы › Автоколебания
Рис. 9.19. График решения (слева) и фазовый портрет (справа) уравнения Ван дер Поля (продолжение листинга 9.14)

Решением уравнения Ван дер Поля являются колебания, вид которых для µ=1 показан на рис. 9.19. Они называются автоколебаниями и принципиально отличаются от рассмотренных нами ранее (например, колебаний маятника в модели осциллятора или численности популяций в модели Вольтерpa) тем, что их характеристики (амплитуда, частота, спектр) не зависят от начальных условий, а определяются исключительно свойствами самой динамической системы. Через некоторое время расчетов после выхода из начальной точки решение выходит на один и тот же цикл колебаний, называемый предельным циклом. Аттрактор типа предельного цикла является замкнутой кривой на фазовой плоскости. К нему асимптотически притягиваются все окрестные траектории, выходящие из различных начальных точек, как изнутри (рис. 9.19), так и снаружи (рис. 9.20) предельного цикла.

Примечание 1
Если компьютер у вас не самый производительный, то расчет в Mathcad фазового портрета с рис. 9.19, 9.20 может занять относительно продолжительное время, что связано с численным определением сначала решения y(t), а потом его производной. Время расчетов можно было бы существенно сократить, если использовать вместо вычислительного блока Given/odesolve одну из встроенных функций, которые выдают решение в виде матрицы, например, rkfixed
.

Примечание 2
По мере возрастания параметра µ модель Ван дер Поля становится все более жесткой. Например, при µ=5000 решение уже придется искать при помощи специфических методов решения жестких задач (см. разд. 9.3). Это еще раз доказывает, что одна и та же система ОДУ с различными коэффициентами может быть жесткой в разной степени
.

Иллюстрированный самоучитель по MathCAD 12 › Обыкновенные дифференциальные уравнения: динамические системы › Автоколебания
Рис. 9.20. Решение уравнения Ван дер Поля при других начальных условиях у=-2, у' =-3

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.