Иллюстрированный самоучитель по MathCAD 12

О постановке задач

В этой главе рассматриваются краевые задачи для обыкновенных дифференциальных уравнений (ОДУ). Средства Mathcad, реализующие алгоритм стрельбы (см. разд. 10.2), позволяют решать краевые задачи для систем ОДУ, в которых часть граничных условий поставлена в начальной точке интервала, а остальная часть – в его конечной точке. Также возможно решать уравнения с граничными условиями, поставленными в некоторой внутренней точке.

Краевые задачи во множестве практических приложений часто зависят от некоторого числового параметра. При этом решение существует не для всех его значений, а лишь для счетного их числа. Такие задачи называют задачами на собственные значения (см. разд. 10.3).

Несмотря на то, что, в отличие от задач Коши для ОДУ, в Mathcad не предусмотрены встроенные функции для решения жестких краевых задач, с ними все-таки можно справиться, применив программирование разностных схем, подходящих для решения задач этого класса (см. разд. 104). О подходе к решению нелинейных краевых задач написано в конце главы (см. разд. 10.5).


Постановка краевых задач для ОДУ отличается от задач Коши, рассмотренных в главе 9, тем, что граничные условия для них ставятся не в одной начальной точке, а на обеих границах расчетного интервала. Если имеется система N обыкновенных дифференциальных уравнений первого порядка, то часть из N условий может быть поставлена на одной границе интервала, а оставшиеся условия – на противоположной границе.

Примечание
Дифференциальные уравнения высших порядков можно свести к эквивалентной системе ОДУ первого порядка (см. главу 9)
.

Чтобы лучше понять, что из себя представляют краевые задачи, рассмотрим их постановочную часть на конкретном физическом примере модели взаимодействия встречных световых пучков. Предположим, что надо определить распределение интенсивности оптического излучения в пространстве между источником (лазером) и зеркалом, заполненном некоторой средой (рис. 10.1). Будем считать, что от зеркала отражается R-Я часть падающего излучения (т. е. его коэффициент отражения равен R), а среда как поглощает излучение с коэффициентом ослабления а(х), так и рассеивает его. Причем коэффициент рассеяния назад равен r(х). В этом случае закон изменения интенсивности у0(х) излучения, распространяющегося вправо, и интенсивности y1 (х) излучения влево определяется системой двух ОДУ первого порядка:

Иллюстрированный самоучитель по MathCAD 12 › Обыкновенные дифференциальные уравнения: краевые задачи › О постановке задач

Для правильной постановки задачи требуется, помимо уравнений, задать такое же количество граничных условий. Одно из них будет выражать известную интенсивность излучения 10, падающего с левой границы х= 0, а второе – закон отражения на его правой границе x=1:

y 0 (0) = 10; (10.2)
y1(l) = Rxy0(l)
.

Иллюстрированный самоучитель по MathCAD 12 › Обыкновенные дифференциальные уравнения: краевые задачи › О постановке задач
Рис. 10.1. Модель краевой задачи

Полученную задачу называют краевой (boundary value problem), поскольку условия поставлены не на одной, а на обеих границах интервала (0.1). И, в связи с этим, их не решить методами предыдущей главы, предназначенными для задач с начальными условиями. Далее для показа возможностей Mathcad будем использовать этот пример с R=1 и конкретным видом a(x)=const=1 и r(x)=const=0.1, описывающим случай изотропного (не зависящего от координаты х) рассеяния.

Примечание 1
Модель, представленная на рис. 10.1, привела к краевой задаче для системы линейных ОДУ. Она имеет аналитическое решение в виде комбинации экспонент. Более сложные, нелинейные, задачи возможно решить только численно. Нетрудно сообразить, что модель станет нелинейной, если сделать коэффициенты ослабления и рассеяния зависящими от интенсивности излучения. Физически это будет соответствовать изменению оптических свойств среды под действием мощного излучения
.

Примечание 2
Модель встречных световых пучков привела нас к системе уравнений (10.1), в которые входят производные только по одной переменной х. Если бы мы стали рассматривать более сложные эффекты рассеяния в стороны (а не только вперед и назад), то в уравнениях появились бы частные производные по другим пространственным переменным у и z. В этом случае получилась бы краевая задача для уравнений в частных производных, решение которой во много раз сложнее ОДУ
.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.