Линейная алгебра
Простейшие матричные операции. Транспонирование.
Задачи линейной алгебры, решаемые в Mathcad, можно условно разделить на два класса. | Первый – это простейшие матричные операции, которые сводятся к определенным арифметическим действиям над элементами матрицы. Они реализованы в виде операторов (см. разд.Сложение и вычитание
В Mathcad можно как складывать матрицы, так и вычитать их друг из друга. Для этих операторов применяются стандартные символы "+" или "– " соответственно. Матрицы должны иметь одинаковую размерность, иначе будет выдано сообщение об ошибке.Умножение
При умножении следует помнить, что матрицу размерности M x N допустимо умножать только на матрицу размерности N x P (р может быть любым). В результате получается матрица размерности M х P. | Чтобы ввести символ умножения, нужно нажать клавишу со звездочкой * или воспользоваться панелью инструментов Matrix (Матрица), нажав на ней кнопку Dot Product (Умножение).Векторная алгебра. Модуль вектора.
Векторы являются частным случаем матриц размерности NXI, поэтому для них справедливы все те операции, что и для матриц, если ограничения особо не оговорены. Вместе с тем для векторов в линейной алгебре предусмотрен целый ряд специфических операций, и все они реализованы в системе Mathcad. | Внимание!Скалярное произведение. Векторное произведение.
Скалярное произведение векторов (vector inner product) определяется как скаляр, равный сумме попарных произведений соответствующих элементов. Векторы должны иметь одинаковую размерность, скалярное произведение имеет ту же размерность.Векторизация массива
Векторная алгебра Mathcad включает несколько необычный оператор, который называется оператором векторизации (vectorize operator). Этот оператор предназначен, как правило, для работы с массивами. Он позволяет провести однотипную операцию над всеми элементами массива (т. е.Вычисление определителей и обращение квадратных матриц. Определитель квадратной матрицы.
Рассмотрим еще несколько исключительно важных действий линейной алгебры, связанных с понятием определителя матрицы. Несмотря на то, что некоторые из них реализованы в Mathcad также в виде операторов, они требуют (при проведении расчетов по численным алгоритмам) несравненно больше внимания, нежели операторы упомянутые в двух предыдущих разделах.Ранг матрицы. Обращение квадратной матрицы.
Рангом (rank) матрицы называют наибольшее натуральное число к, для которого существует не равный нулю определитель k-ro порядка подматрицы, составленной из любого пересечения k столбцов и k строк матрицы. | Для вычисления ранга в Mathcad предназначена функция rank (листинг 7.15).Возведение квадратной матрицы в степень
К квадратным матрицам можно формально применять операцию возведения в степень n. Для этого n должно быть целым числом. Результат данной операции приведен в табл. 7.1. Ввести оператор возведения матрицы м в степень n можно точно так же, как и для скалярной величины: нажав кнопку Raise to Power (Возвести в степень) на панели Calculator (Калькулятор) или нажав клавишу А.Матричные нормы
В линейной алгебре используются различные векторные и матричные нормы (norm), которые ставят в соответствие матрице некоторую скалярную числовую характеристику. Норма матрицы отражает порядок величины матричных элементов.Число обусловленности квадратной матрицы
Еще одной важной характеристикой матрицы является ее число обусловленности (condition number). Число обусловленности является мерой чувствительности системы линейных уравнений А-Х=B, определяемой матрицей А, к погрешностям задания вектора b правых частей уравнений (см. главу 8).Вспомогательные матричные функции. Автоматическая генерация матриц.
Перечислим основные встроенные функции, предназначенные для облегчения работы с векторами и матрицами. Они нужны для создания матриц, слияния и выделения части матриц, получения основных свойств матриц и т. п.Разбиение и слияние матриц
Из матрицы или вектора можно выделить либо подматрицу, либо вектор-столбец, либо отдельный элемент. И обратно, можно "склеить" несколько матриц в одну. | Выделение подматрицы | Часть матрицы выделяется одним из следующих способов (листинг 7.22):Сортировка элементов матриц
Часто бывает нужно переставить элементы матрицы или вектора, расположив их в определенной строке или столбце в порядке возрастания или убывания. Для этого имеются несколько встроенных функций, которые позволяют гибко управлять сортировкой матриц:Вывод размера матрицы
Для получения сведений о характеристиках матриц или векторов предусмотрены следующие встроенные функции (листинги 7.28 и 7.29 соответственно): | rows (A) – число строк; | cols (А) – число столбцов; | length (v) – число элементов вектора; | last (v) – индекс последнего элемента вектора: