Оптимизация
Оптимизация
В этой главе рассматриваются задачи на поиск экстремума функций и близкие к ним задачи приближенного решения алгебраических нелинейных уравнений и систем. Задачи поиска экстремума функции означают нахождение ее максимума (наибольшего значения) или минимума (наименьшего значения) в некоторой области определения ее аргументов.Поиск экстремума функции. Локальный экстремум.
Для численного решения задач поиска локального максимума и минимума в Mathcad имеются встроенные функции Minerr, Minimize и Maximize. Принцип их действия очень близок к принципу расчетов, заложенных во встроенной функции Find, предназначенной для решения алгебраических уравнений (см. главу 5).Условный экстремум
В задачах на условный экстремум встроенные функции минимизации и максимизации должны быть включены в вычислительный блок, т. е. им должно предшествовать ключевое слово Given. В промежутке между Given и функцией поиска экстремума с помощью булевых операторов записываются логические выражения (неравенства, уравнения), задающие ограничения на значения аргументов минимизируемой функции.Экстремум функции нескольких переменных
Вычисление экстремума функции многих переменных не несет принципиальных особенностей по сравнению с функциями одной переменной. Поэтому ограничимся примером нахождения максимума и минимума функции, показанной в виде графиков трехмерной поверхности и линий уровня (листинг 6.5).Пример: линейное программирование
Задачи поиска условного экстремума функции многих переменных часто встречаются в экономических расчетах для минимизации издержек, финансовых рисков, максимизации прибыли и т. п. Целый класс экономических задач оптимизации описывается системами линейных уравнений и неравенств.Аналитическое решение задач на экстремум
Несмотря на то, что, как уже говорилось, разработчиками Mathcad символьное решение задач оптимизации не предусмотрено, пользователь все-таки имеет возможность аналитического исследования экстремумов функций, опираясь на базовые сведения математического анализа.Приближенное решение алгебраических уравнений
Градиентные численные методы решения задач отделения корней уравнений и поиска экстремума функций очень близки. Поэтому, в частности, пользователь может тем же самым образом, с помощью контекстного меню, выбирать конкретный метод приближенного решения для функций Minimize и Maximize.Пример: регуляризация некорректных задач. О постановке некорректных задач.
Еще один широко распространенный круг задач на решение систем уравнений, называемых обратными, наиболее типичен для современной экспериментальной физики. Значительную часть обратных задач относят к классу некорректно поставленных (или просто некорректных), которые, благодаря своей принципиальной неустойчивости, требуют специального подхода.Квазирешение
Одним из наиболее простых методов решения некорректных обратных задач является концепция поиска их квазирешения. Рассмотрим обратную задачу AY=B, где неизвестный вектор Y подлежит определению, а оператор (в линейном случае, матрица) А и вектор правых частей уравнений в известны.Регуляризация Тихонова
Говоря о некорректных задачах, нельзя не отметить, что для их решения советским математиком Тихоновым был предложен чрезвычайно эффективный метод, называемый регуляризацией и основанный на привлечении дополнительной априорной информации о решении, которая может быть как качественной, так и количественной. Например, можно искать решение, максимально близкое к некоторому профилю, т. е.