Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Maple 9

Математические функции

Таблица А2. Процедуры и функции для работы с целыми числами.

Функция Описание
factorial(n) Вычисление факториала целого неотрицательного числа n. Того же результата можно добиться вызовом nl
igcdex(n,m,'a','b') Расширенный алгоритм Евклида. Процедура возвращает наибольший общий делитель чисел пит. Кроме того, переменным а и b (названия этих переменных определяются пользователем по своему усмотрению) присваиваются значения, такие, что igcdex(n,m,'a','b')=n*a+m*b
iroot(n,m,'opt') Целочисленный корень порядка m из числа п. Если указать третий параметр (название произвольно, в данном случае – 'opt'), то ему будет присвоено значение true, если результат точный, и false – в противном случае
isprime(n) Процедура проверки, является ли число п простым (значение true) или нет (значение false)
isqrt(n) Целочисленный квадратный корень, т.е.максимальное целое число, которое, будучи возведенным в квадрат, не превысит n. Для отрицательного аргумента функция возвращает 0.
max(N1,N2,…Nm) Максимальное из чисел (N1, N2,… Nm)
min(N1,N2,…Nm) Минимальное из чисел (N1,N2,…Nm)
sign(n) Знак числа n (не обязательно целого)

Таблица А3. Процедуры и функции для работы с числами с плавающей точкой.

Функция Описание
CopySign(x, у) Для действительных аргументов функция возвращает в качестве результата число, равное по модулю х, но имеющее знак у. Если первый аргумент комплексный, то в качестве результата возвращается х, умноженный на у. Для комплексного у возвращается значение undefined (undefined – значит неопределенный). В результате выполнения функции сами аргументы (х и у) не меняются
Default0() Функция возвращает значение нуля, используемое по умолчанию (нуль с плавающей точкой имеет знак). Это значение определяется настройкой переменной окружения rounding
MfenltOverflow(s) Функция возвращает используемое по умолчанию значение переполнения. Оно равно s'Float(infinity), где s=1 или s=-1
DefaultUnderflov(s) Функция возвращает используемое по умолчанию значение потери значимости. Оно равно s*0.0, где s=1 или s=-1
frem(x,y) Остаток отделения х на у, вычисляемый согласно правилу frem(x,y)=x-y*N, где N является ближайшим целым числом к отношению х/у
ilog[b](x) Целочисленный логарифм х по основанию b
ilog2(x) Целочисленный логарифм х по основанию 2
ilog10(x) Целочисленный логарифм х по основанию 10
Im(x) Мнимая часть числа х
NextAfter(x,y) Возвращается следующее доступное после х число в направлении числа у. Доступность в данном случае определяется возможностями системы, а отношение "следующее" задается системными настройками и, в частности, значением переменной среды Digits. Если х является наименьшим (наибольшим) доступным положительным числом и х>у (х<у), функцией возвращается значение (infinity) и генерируется событие underflow – потеря значимости (overflow– переполнение)
NumericClass(x) Возвращается класс числа х. Классификация основывается на поддерживаемых в Maple типах данных
OrderedNE(x,y) Функция проверки наличия упорядоченности. Функция возвращает значение true только в тех случаях, когда у<х или х<у. Если один из аргументов является комплексным, возвращается значение FAIL
Re(x) Действительная часть числа х
Scale10(x,N) Функция масштабирования числа х согласно правилу Scale10(x, N)=x*10AN
Scale2(x,N) Функция масштабирования числа х согласно правилу Scale2(x, N)=x*2AN
SfloatMantissa(x) Вычисление мантиссы числа х
SfloatExponent(x) Вычисление показателя экспонирования числа х
Unordered(x,у) Проверка отсутствия упорядоченности между х и у (проверка на предмет того, является ли одно из этих чисел больше другого). Функция возвращает значение true, если упорядоченность отсутствует, и false – при наличии упорядоченности
Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.