Иллюстрированный самоучитель по Maple 9
Числовые и функциональные ряды
-
В Maple для суммирования большого (хотя и не обязательно) числа слагаемых предназначена процедура sum(), имеющая два параметра, которые при вызове процедуры разделяются запятой. Посредством первого параметра а(k) задается общая зависимость слагаемых от индекса суммирования к.
-
Существенным является класс задач, в которых предусматривается исследование рядов на предмет сходимости. В этом случае нет необходимости суммировать ряд – нужно только сделать вывод, сходится ряд или расходится. | Рассмотрим примеры исследования рядов на сходимость.
-
Разложение функции в ряд Тейлора, или, в более общем случае, Лорана, находит самое широкое применение как при решении задач высшей математики, так и в прикладных областях. | В Maple на этот случай предусмотрены такие процедуры: | taylor() – разложение в ряд Тейлора,
-
При решении задач математической физики очень часто приходится выполнять разложение по системам ортогональных функций. В тех случаях, когда базовыми являются тригонометрические функции, а само разложение выполняется на конечном интервале, такое разложение называется рядом Фурье.
-
Выше уже упоминалось о системах ортогональных функций. Эти функции используются при решении задач математической физики (линейных дифференциальных уравнений второго порядка) и часто упоминаются в литературе как специальные функции.
-
Описанные в этой главе методы разложения функций в ряды Тейлора, Фурье и основы работы со специальными функциями имеют непосредственное отношение к решению дифференциальных уравнений – как обыкновенных, так и уравнений в частных производных.
Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.