Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по введению в экспертные системы

Классический период: игры и доказательство теорем. Поиск в пространстве состояний.

Для любого данного узла N алгоритм поиска в глубину строит потомок этого узла, т.е. формирует состояние, которое образуется в результате применения операторов к узлу N, а потом переходит к формированию узла, ближайшего к N, на том же уровне графа ("соседу" N), т.е. формирует состояние, которое образуется в результате применения оператора к узлу-родителю N. Алгоритм поиска в ширину действует наоборот – сначала формируются все "соседи" узла N, а потом уже строятся его потомки.

Таким образом, в алгоритме поиска в ширину просматриваются последовательно состояния, представленные узлами одного и того же уровня на графе (рис. 2.2), а в алгоритме поиска в глубину просматриваются состояния на одном пути, а затем происходит возврат назад на один уровень и формируется следующий путь (рис. 2.3).

Иллюстрированный самоучитель по введению в экспертные системы › Обзор исследований в области искусственного интеллекта › Классический период: игры и доказательство теорем. Поиск в пространстве состояний.
Рис. 2.2. Граф пространства состояний при использовании алгоритма поиска в ширину

Иллюстрированный самоучитель по введению в экспертные системы › Обзор исследований в области искусственного интеллекта › Классический период: игры и доказательство теорем. Поиск в пространстве состояний.
Рис. 2.3. Граф пространства состояний при использовании алгоритма поиска в глубину

На обоих рисунках числа на дугах графа указывают номер шага, на котором формируется тот узел (состояние), для которого эта дуга является входящей. Конечно, этот номер еще зависит и от того, в каком порядке используются операторы из имеющегося множества. В представленном примере сначала применяется оператор, добавляющий очередную букву в конец последовательности, затем оператор, добавляющий букву на предпоследнюю позицию, и т.д., а последним применяется оператор, добавляющий букву на первое место. Но ведь можно использовать и обратный порядок применения операторов.

Оба алгоритма завершат работу (найдут конечное состояние) после формирования узла "act", а не "cat". Но алгоритму поиска в ширину придется для этого "посетить" пять узлов (сформировать и проанализировать пять состояний), а алгоритму поиска в глубину – четыре.

Отметим, что свойства этих алгоритмов существенно отличаются.

  • Алгоритм поиска в ширину отыскивает решение, путь к которому на графе – кратчайший, если таковое существует. Другими словами, он находит кратчайший путь между исходным состоянием и решением. Алгоритмы, обладающие таким свойством, называются разрешимыми (admissible).
  • Алгоритм поиска в глубину может быстрее найти решение, особенно, если при его выполнении используются эвристики для выбора очередной ветви. Но этот алгоритм может никогда не закончиться, если пространство состояний бесконечно.
Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.