Схемы представления знаний
Независимо от того, насколько это вторжение в науку о познании было продуктивным для психологии, оно способствовало весьма существенному прогрессу в информатике. Ньюэлл (Newell) и Саймон (Simon) предложили схему, известную как набор порождающих правил (production rules). (Подобно мы поговорим о ней в главе 5.) Со временем порождающие правила стали основным инструментом при проектировании экспертных системы. Ньюэллу и Саймону также принадлежит приоритет в разработке методики, получившей наименование анализ протокола (protocol analysis).
Эта методика заключается в том, что человеку предлагается "думать вслух" в процессе решения проблемы, а затем зафиксированный протокол анализируют и пытаются отыскать в нем концепции и процедуры, которые были использованы человеком. Этот подход можно считать предшественником используемой сегодня методики извлечения знаний. Уже первые исследования на стыке психологии и информатики показали, насколько сложной является проблема представления знаний, но они также и продемонстрировали, что ее решения следует искать скорее на пути эмпирических исследований, чем философских дебатов.
В романтический период было предпринято множество исследований, целью которых было выяснить, каким образом и многообразие сведений об отдельных фактах, и общие принципы построения окружающего нас мира можно использовать в компьютерной программе, которая ориентирована на построение логического рассуждения, направленного на достижение определенной цели. Эти исследования включали использование конструкций следующих видов (чаще в чистом виде, но иногда и в комбинации):
- правил в форме, "если имеет место это условие, то примени этот оператор";
- разного рода сетей, в которых узлы соответствуют концепциям, а дуги – отношениям между ними;
- логических формул, представляющих отдельные факты и принципы, включая управляющую информацию о том, когда применить то или иное соответствие.
Следует отметить, что большинство созданных в этот период программ носили только исследовательский характер. Лишь немногие работы получили продолжение и воплотились в нечто, приложимое к реальным задачам.
Весьма репрезентативная подборка статей, написанных в первой половине этого периода, опубликована Минским [Minsky, 1968]. Любая из них представляет интерес, но далеко не все убедительны с точки зрения достижений сегодняшнего дня. Тем не менее множество схем представления знаний, которым мы отдаем предпочтение в современных разработках, основаны именно на результатах, полученных в тот романтический период. Например, в работе Квилиана (Quillian) предложены ассоциативные и семантические сети в качестве графического формализма для описания фактов и определений (подробнее об этом– в главе 6). Без результатов, полученных в это время, вряд ли разработчики современных экспертных систем располагали бы таким разнообразием функций и структур.
Наиболее интересные работы, опубликованные во второй половине этого периода, собраны Уинстоном [Winston, 1976,b]. Среди них я настоятельно рекомендую ознакомиться с фундаментальной работой Минского о формализме представления знаний, получившем наименование фреймов. Работы, выполненные в этом направлении в 70-е годы в Массачусетсском технологическом институте, собраны в двухтомнике Уинстона и Брауна [Winston and Brown, 1979]. Здесь вы найдете множество статей и о тех областях искусственного интеллекта, которые выходят за рамки этой книги, в частности о машинном восприятии естественного человеческого языка, искусственном зрении, робототехнике.
Летучие мыши и проблема с пингвинами
Семантические цепи представляют собой средство представления знаний, базирующееся на формализме теории графов. В таксономическом графе на рис. 2.4 представлены наши познания о птицах, перепончатокрылых млекопитающих и даже специфических видах рыб– летающих. Однако птицы являются куда более типичными представителями летающих животных, чем, скажем, летучие мыши (перепончатокрылые млекопитающие), которые, в свою очередь, более распространены, чем летающие рыбы. Этот факт никак не отражается на простом графе.
Рис. 2.4. Простой таксономический граф, не учитывающий исключений