Исчисление предикатов
Исчисление высказываний имеет определенные ограничения. Оно не позволяет оперировать с обобщенными утверждениями вроде "Все люди смертны". Конечно, можно обозначить такое утверждение некоторой пропозициональной константой р, а другой константой q обозначить утверждение "Сократ – человек". Но из (р л q) нельзя вывести утверждение "Сократ смертен".
Для этого нужно анализировать пропозициональные символы в форме предикатов и аргументов, кванторов и квантифицированных переменных. Логика предикатов предоставляет нам набор синтаксических правил, позволяющих выполнить такой анализ, набор семантических правил, с помощью которых интерпретируются эти выражения, и теорию доказательств, которая позволяет вывести правильные формулы, используя синтаксические правила дедукции. Предикатами обозначаются свойства, такие как "быть человеком", и отношения, такие как быть "выше, чем".
Аргументы могут быть отдельными константами, или составным выражением "функция-аргумент", которое обозначает сущности некоторого мира интересующих нас объектов, или отдельными квантифицируемыми переменными, которые определены в этом пространстве объектов. Специальные операторы – кванторы – используются для связывания переменных и ограничения области их интерпретации. Стандартными являются кванторы общности (V) и существования (3). Первый интерпретируется как "все", а второй – "кое-кто" (или "кое-что").
Ниже приведены синтаксические правила исчисления предикатов первого порядка.
Любой символ (константа или переменная) является термом. Если rk является символом k-местной функции и а1…, <xk являются термами, то Гk(a1…, ak) является термом.
(S 40
Если Tk является символом k-местного предиката и а1…, ak являются термами, то U(а1…, ak) является правильно построенной формулой (ППФ).
(S. – ) и (S .v)
Правила заимствуются из исчисления высказывания: (S. V) Если U является ППФ и % является переменной, то (любой Х) U является ППФ.
Для обозначения используются следующие символы:
- U – произвольный предикат;
- Г – произвольная функция;
- a – произвольный терм;
- X– произвольная переменная.
Действительные имена, символы функций и предикатов являются элементами языка первого порядка.
Использование квантора существования позволяет преобразовать термы с квантором общности в соответствии с определением:
(EX)U определено как – (любой X)-U.
Выражение (EХ)(ФИЛОСОФ(Х)) читается как "Кое-кто является философом", а выражение (любой Х)(ФИЛОСОФ(Х)) читается как "Любой является философом". Выражение ФИЛОСОФ(Х) представляет собой правильно построенную формулу, но это не предложение, поскольку область интерпретации для переменной X не определена каким-либо квантором. Формулы, в которых все упомянутые переменные имеют определенные области интерпретации, называются замкнутыми формулами.