Резюме. Текущее состояние проблемы.
В этой главе я старался не только обратить внимание на сильные стороны экспертных систем, но прямо указать на присущие им ограничения. Таким образом, читатель, не знакомый с этой проблематикой, должен, по крайней мере, получить представление о том, чего можно ожидать от такого типа систем и насколько возможно приложение описанных в этой книге идей в той области, в которой читатель работает. Ниже я дам обзор остального материала книги и скажу о том, на какие главы следует обратить внимание читателям разных категорий в зависимости от круга их интересов. Этот материал в значительной мере повторяет предисловие к данной книге, но поскольку большинство читателей, как правило, предисловие перелистывают, не читая (я в этом смысле не исключение), то думаю, такое повторение имеет определенный смысл.
Потенциальный пользователь экспертной системы чаще всего задается вопросом: "А сможет ли она решить мои проблемы?" Ответ уклончивый: "Смотря какие". Существуют три фактора, от которых зависит окончательный ответ, – природа проблемы, наличие определенного опыта в той предметной области, к которой относится проблема, и возможность сопоставления результатов анализа проблемы и имеющегося опыта методом, доступным компьютерной программе. Потенциальному пользователю следует сначала задуматься над следующим: есть ли у него на примете эксперт, который:
- способен решить проблему;
- знает, как решается проблема;
- способен объяснить другому, как решается проблема;
- располагает временем, чтобы объяснить другому, как решается проблема;
- имеет достаточные побудительные мотивы к активному участию в этом предприятии.
Например, предсказание погоды – это не та задача, которую может решить кто-либо, даже умудренный большим опытом эксперт. Распознавание речи – это задача, которую решает практически каждый, но никто из нас (включая и профессиональных лингвистов) не может вразумительно объяснить, как это делается. А потому использовать для решения этой проблемы методы, основанные на анализе знаний, вряд ли удастся. Здесь большего следует ожидать от статистического моделирования. Даже имея на примете гениального эксперта, знающего, как решается задача, нельзя рассчитывать на успех, если этот эксперт не может или не желает подробно и вразумительно объяснить, как он это делает.
Эксперт может быть не расположен к общению с посторонними или слишком занят, чтобы терять время на длительные собеседования с инженером, которому поручено проектирование базы знаний. Как правило, эксперт высокого класса не испытывает недостатка в предложениях работы в той области, с которой он хорошо знаком, а потому предпочитает выполнять ее, а не вести пространные беседы о том, как он это делает. Есть еще и психологический фактор – многие эксперты весьма ревниво относятся к своему уникальному опыту и не склонны его разглашать, поскольку считают (и нам нечего возразить им), что, передавая опыт автоматизированным системам, они рубят сук, на котором сидят.
Но даже если удастся выполнить оговоренные выше условия, в задаче могут существовать факторы, ограничивающие возможность "машинного" воспроизведения человеческого опыта. Например:
- в процессе решения задачи используются способности органов чувств человека, недоступные на сегодняшний день в мире машин;
- в решение задачи вовлечены соображения здравого смысла человечества или большой объем знаний, само собой разумеющихся для любого человека (более подробно об этом – в главе 3).
Очень важно отделить те знания, владение которыми характерно именно для эксперта в определенной области, от тех знаний, которые известны любому, выполняющему в этой области рутинную работу. Управление автомобилем при езде по забитым транспортом улицам требует не столько знаний эксперта, сколько умения мгновенно оценивать ситуацию и быстро на нее реагировать. Хотя современные роботы такой скоростью и таким умением не владеют, вряд ли кто-нибудь назовет такого водителя "экспертом" (по крайней мере, в моем родном Рочестере, шт. Нью-Йорк).
Нельзя упускать из виду и огромный объем знаний об окружающем мире, которым мы все располагаем: знаниями о предметах и их свойствах, людях и мотивации их действий, взаимосвязях в физическом мире и наиболее вероятном течении событий в тех или иных условиях – список можно продолжать до бесконечности. Эту совокупность знаний мы не включаем в знания, отличающие эксперта, но до сих пор еще совсем не ясно, насколько они важны компьютеру для решения узкоспециальной проблемы. Таким образом, любая задача, которую не удается "инкапсулировать" в ограниченный перечень фактов и правил, на сегодняшний день не под силу экспертным системам.
С другой стороны, проблемы, которые могут быть решены перечислением ассоциативных связей между обозримыми совокупностями данных и классами событий, прекрасно подходят для экспертных систем. Например, проблемы, связанные с функционированием промышленных систем (тепловые, вентиляционные или кондиционирования)– диагностика, мониторинг состояния и т.д.,– могут решаться системами, основанными на анализе формальных правил, связывающих энергопотребление здания с параметрами окружающей среды. Уже на нынешнем этапе с помощью экспертных систем решаются задачи эскизного конструирования многокомпонентных объектов из заданного набора примитивов. С примерами такого рода систем вы познакомитесь в, главах 14 и 15.