Проект Explainable Expert Systems
Свотаут обратил внимание на проблему "компьютерных артефактов" в тех средствах формирования пояснений, которые использовались в ранее разработанных экспертных системах. Под такими артефактами он подразумевал те аспекты выполнения вычислений, которые связаны не с лежащей в основе системы моделью предметной области, а с программной реализацией алгоритмов самого нижнего уровня. Эти аспекты поведения программы совершенно не интересуют специалистов, пользующихся услугами экспертной системы.
Система XPLAN создавалась в рамках проекта Explainable Expert Systems (EES) [Heches et al, 1985], [Moore, 1995]. Идея этого проекта вполне созвучна существующей в настоящее время тенденции группировать и представлять в явном виде знания различного вида. Кроме того, в рамках этого проекта предпринята попытка использовать формальные методы, которые позволили бы зафиксировать в базе знаний системы основные решения, принимаемые в процессе ее разработки. Отсутствие таких формальных методов приводит к тому, что информация об основных решениях, положенных в основу проектирования, теряется на стадии реализации системы.
На рис. 16.3 представлена структурная схема оболочки, созданной в рамках проекта EES. Обратите внимание на прямоугольник в левой части схемы, который представляет базу знаний системы. В эту базу знаний входят не только модель и правила предметной области, но и много дополнительной информации, например описание терминологии предметной области, информация, связанная с правилами предметной области, о доводах в пользу и против выбора определенной стратегии достижения цели, информация о том, каким целям отдается предпочтение в процессе решения проблемы, и т.д.
Знания, выделенные в группу "Интеграция", используются для разрешения конфликтов между правилами предметной области в процессе работы "автоматического программиста", а знания, выделенные в группу "Оптимизация", имеют отношение к производительности экспертной системы, генерируемой этим автоматическим программистом. Эти служебные группы знаний представляют те виды метазнаний, которые не связаны непосредственно с выбором правил объектного уровня в процессе логического вывода на этапе функционирования экспертной системы, а имеют отношение скорее к этапу ее проектирования.
Рис. 16.3. Структура оболочки EES ([Neches et al., 1985])
Семантика базы знаний системы EES представлена в виде семантической сети, получившей наименование NIKL [Moser, 1983]. Сеть появилась в результате развития идей, положенных в основу создания сети KL-ONE [Brachman and Schmolze, 1985]. NIKL, так же, как и KL-ONE, формирует множество концептов, имеющих собственную внутреннюю структуру (набор слотов или ролей), между которыми можно задавать отношения (формировать связи). NIKL также имеет в своем составе классификатор, который, располагая информацией о структуре конкретной сети и новом концепте с определенной структурой, может поместить этот новый концепт на соответствующее ему место в общей таксономии концептов.
Пусть, например, в сети имеются узлы концептов ЖИВОТНОЕ, СОБАКА и БЕШЕНОЕ-ЖИВОТНОЕ, а в классификатор поступает новый концепт БЕШЕНАЯ-СОБАКА. В ответ классификатор формирует новый узел для этого концепта и отводит ему место в иерархии. Новый узел будет связан "узами наследования" с узлами СОБАКА и БЕШЕНОЕ-ЖИВОТНОЕ. Это выполняется после анализа свойств и характеристик нового концепта (рис. 16.4). Трудно переоценить способность системы наращивать таким образом базу знаний, которая, как правило, никогда не создается за "один присест".
Рис. 16.4. Включение нового концепта в семантическую сеть знаний