Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по SPSS 10/11

Кривые ROC

Понятие кривых ROC (Receiver Operating Characteristic – функциональные характеристики приемника) взято из методологии анализа качества приема сигнала (Signal Detection Analysis). Теория, стоящая за этим анализом, Theorie of Signal Detectability (TSD – "Теория определимости сигнала"), хотя и происходит первоначально из электроники и электротехники, но может также быть применена в области медицины, для анализа взаимодействия чувствительности и представительности диагностического теста. Поясним это при помощи примера.

В разделе 16.4 (Бинарная логистическая регрессия) было показано, каким образом при помощи переменных, соответствующих результатам Т-типизации клеток, которые относятся к интервальной шкале, может быть спрогнозировано появление карциномы мочевого пузыря. Если вы посмотрите на обе группы (больных и здоровых), то заметите, что здоровые демонстрируют более высокие значения Т-типизации ячеек, а больные скорее более низкие значения. Поэтому можно попытаться найти граничное значение Т-типизации ячеек, которое будет четко разделять обе группы больных и здоровых.

Это и было достигнуто при помощи метода бинарной логистической регрессии. Пройдем еще раз тот путь, который мы проходили в главе 16.4.

  • Откройте файл hkarz.sav.
  • Выберите в меню Analyze… (Анализ) › Regression…(Регрессия) › Binary logistic… (Бинарная логистическая)
  • В диалоговом окне Logistic Regression (Логистическая регрессия) переменную gruppe (группа) поместите в поле зависимых переменных, а переменную tzell – в поле ковариций. Результаты теста LAI мы сначала не будем использовать в расчете. При помощи выключателя Save… (Сохранить) организуйте сохранение прогнозируемой принадлежности к группе в виде дополнительной переменной. Начните расчет нажатием ОК.

К исходному файлу данных добавилась переменная pgr_1. Если Вы построите таблицу сопряженности между переменной gruppe (группа) в качестве строчной переменной и переменной pgr_1 в качестве столбцовой переменной, то получите следующий результат (для сравнения см. рис. 16.7):

GRUPPE * Predicted group Crosstabulation (GRUPPE * Прогнозируемая группа таблица сопряженности)

Count (Количество)
  Predicted group (Прогнозируемая группа) Total (Сумма)
krank (Болен) gesund (Здоров)
GRUPPE krank (Болен) 18 6 24
gesund (Здоров) 4 17 21
Total (Сумма)   22 23 45

Среди 24 фактически больных 18 были верно расценены как больные (Rightly Positive (Верно положительный), RP), а 6 не верно отнесены к группе здоровых (Wrong Negative (Ложно отрицательный), WN). Из 21 фактически здорового человека 17 были верно отнесены к группе здоровых (Rightly Negative (Верно отрицательный), RN) и 4 не верно расценены больными (Wrong Positive (Ложно положительный), WP).

В качестве чувствительности теста выступает доля верно положительных предсказаний в суммарном количестве больных.

Иллюстрированный самоучитель по SPSS 10/11 › Стандартные графики › Кривые ROC

Эта величина характеризует способность теста как можно точнее отфильтровывать пациентов с сомнительным наличием болезни.

Под представительностью теста понимают долю верно отрицательных среди здоровых пациентов:

Иллюстрированный самоучитель по SPSS 10/11 › Стандартные графики › Кривые ROC

Эта величина характеризует способность теста обнаруживать исключительно пациентов с сомнительным наличием болезни. Для приведенного примера имеем:

Чувствительность = 18 / (18 + 6) = 0.750
Представительность = 17 / (17 + 4) = 0.810
  • Если при помощи меню Data (Данные) › Sort Cases… (Сортировать наблюдения) вы отсортируйте данные по переменной tzcll, то заметите, что все наблюдения со значениями, лежащими ниже 66.5, отнесены к категории болен, а все наблюдения со значениями, находящимися выше 66.5, отнесены к категории здоров.
  • Если Вы сместите граничное значение вниз или вверх и вновь рассчитаете чувствительность и специфичность, то результаты изменятся таким образом, что повышение чувствительности будет идти за счет представительности, а повышение представительности за счет чувствительности. Эту зависимость можно анализировать при помощи кривой ROC.
  • Выберите в меню Graphs (Графики) › ROC Curve… (Кривая ROC)
Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.