Пример: уравнение диффузии тепла
Стационарное двумерное уравнение
Частный случай уравнения теплопроводности определяет стационарную, т. е. не зависящую от времени задачу. Стационарное уравнение описывает физическую картину распределения температуры по пластине, не изменяющуюся с течением времени. Такая картина может возникнуть при условии, что стационарный источник тепла действует довольно продолжительное время, и переходные процессы, вызванные его включением, прекратились. Пример численного решения такого уравнения показан на рис. 13.2 в виде поверхности и (х,у).
Рис. 13.2. Решение стационарного двумерного уравнения теплопроводности (см. листинг 13.7 ниже)
Как несложно сообразить, если искомая функция не зависит от времени, то частная производная по времени в левой части уравнения равна нулю, и само уравнение можно переписать (переобозначив ради упрощения) другим образом.
Полученное уравнение, согласно классификации предыдущего раздела, является эллиптическим. Его называют уравнением Пуассона, а для его решения в Mathcad предусмотрены две встроенные функции. Если, к тому же, источники равны нулю, то уравнение, принимающее вид du=0, называют уравнением Лапласа.
Одномерное динамическое уравнение
Предположим, что мы рассматриваем задачу распределения тепла не по плоской поверхности, а по удлиненному телу типа металлического стержня (рис. 13.3). В этом случае зависимость от координаты у в общем уравнении теплопроводности пропадает, и получается одномерное уравнение.
Рис. 13.3. Физическая модель одномерного уравнения теплопроводности
Одномерное уравнение намного проще двумерного, поскольку объем вычислений для реализации алгоритма его численного решения не так велик. Типичное решение одномерного уравнения диффузии тепла с коэффициентом диффузии D=2, нулевым источником ф=0 и начальным распределением температуры в форме нагретой центральной области стержня показано (в виде графика поверхности) на рис. 13.4.
Рис. 13.4. Решение одномерного уравнения теплопроводности (см. листинг 13.1 ниже)
Начиная с новой версии Mathcad 11, для решения одномерных параболических и гиперболических уравнений можно применять новую встроенную функцию pdesolve.