Эллиптические уравнения
Решение эллиптических уравнений в частных производных реализовано только для единственного типа задач – двумерного уравнения Пуассона. Это уравнение содержит вторые производные функции u(х,у) по двум пространственным переменным:
Уравнение Пуассона описывает, например, распределение электростатического поля u(х,у) в двумерной области с плотностью заряда f (х,у) или (см. разд. 13.1.2) стационарное распределение температуры u(х,у) на плоскости, в которой имеются источники (или поглотители) тепла с интенсивностью f (х,у).
Несмотря на то, что применение встроенных функций, описанных в данном разделе, анонсировано разработчиками Mathcad только для уравнения Пуассона, их можно применять и для решения других уравнений, даже необязательно эллиптического типа. О том, как осуществить такие расчеты, написано в конце данного раздела.
Уравнение Пуассона с нулевыми граничными условиями
Корректная постановка краевой задачи для уравнения Пуассона требует задания граничных условий. В Mathcad решение ищется на плоской квадратной области, состоящей из (м+1)х(м+1) точек. Поэтому граничные условия должны быть определены пользователем для всех четырех сторон упомянутого квадрата. Самый простой вариант – это нулевые граничные условия, т. е. постоянная температура по всему периметру расчетной области. В таком случае можно использовать встроенную функцию multigrid.
- muitigrid(F,ncycle) – матрица решения уравнения Пуассона размера (M+1)х(M+1) на квадратной области с нулевыми граничными условиями;
- F – матрица размера (M+1)X(M+1), задающая правую часть уравнения Пуассона;
- ncycie – параметр численного алгоритма (количество циклов в пределах каждой итерации).
Сторона квадрата расчетной области должна включать точно M=2n шагов, т.е. 2n +1 узлов, где n – целое число.
Параметр численного метода ncycie в большинстве случаев достаточно взять равным 2. Листинг 13.6 содержит пример использования функции multigrid для расчета краевой задачи на области ззхзз точки и точечным источником тепла в месте, задаваемом координатами (15.20) внутри этой области.
Листинг 13.6. Решение уравнения Пуассона с нулевыми граничными условиями:
В первой строке листинга задается значение M=32, в двух следующих строках создается матрица правой части уравнения Пуассона, состоящая из всех нулевых элементов, за исключением одного, задающего расположение источника. В последней строке матрице G присваивается результат действия функции multigrid. Обратите внимание, первый ее аргумент сопровождается знаком "минус", что соответствует записи правой части уравнения Пуассона (11). Графики решения показаны на рис. 13.16 и 13.17 в виде трехмерной поверхности и линий уровня, соответственно.
Рис. 13.16. График поверхности решения уравнения Пуассона (листинг 13.6)
Рис. 13.17. График линий уровня решения уравнения Пуассона (листинг 13.6)