Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по MathCAD 11

Эллиптические уравнения

Решение эллиптических уравнений в частных производных реализовано только для единственного типа задач – двумерного уравнения Пуассона. Это уравнение содержит вторые производные функции u(х,у) по двум пространственным переменным:

Уравнение Пуассона описывает, например, распределение электростатического поля u(х,у) в двумерной области с плотностью заряда f (х,у) или (см. разд. 13.1.2) стационарное распределение температуры u(х,у) на плоскости, в которой имеются источники (или поглотители) тепла с интенсивностью f (х,у).

Несмотря на то, что применение встроенных функций, описанных в данном разделе, анонсировано разработчиками Mathcad только для уравнения Пуассона, их можно применять и для решения других уравнений, даже необязательно эллиптического типа. О том, как осуществить такие расчеты, написано в конце данного раздела.

Уравнение Пуассона с нулевыми граничными условиями

Корректная постановка краевой задачи для уравнения Пуассона требует задания граничных условий. В Mathcad решение ищется на плоской квадратной области, состоящей из (м+1)х(м+1) точек. Поэтому граничные условия должны быть определены пользователем для всех четырех сторон упомянутого квадрата. Самый простой вариант – это нулевые граничные условия, т. е. постоянная температура по всему периметру расчетной области. В таком случае можно использовать встроенную функцию multigrid.

  • muitigrid(F,ncycle) – матрица решения уравнения Пуассона размера (M+1)х(M+1) на квадратной области с нулевыми граничными условиями;
    • F – матрица размера (M+1)X(M+1), задающая правую часть уравнения Пуассона;
    • ncycie – параметр численного алгоритма (количество циклов в пределах каждой итерации).

Сторона квадрата расчетной области должна включать точно M=2n шагов, т.е. 2n +1 узлов, где n – целое число.

Параметр численного метода ncycie в большинстве случаев достаточно взять равным 2. Листинг 13.6 содержит пример использования функции multigrid для расчета краевой задачи на области ззхзз точки и точечным источником тепла в месте, задаваемом координатами (15.20) внутри этой области.

Листинг 13.6. Решение уравнения Пуассона с нулевыми граничными условиями:

Иллюстрированный самоучитель по MathCAD 11 › Дифференциальные уравнения в частных производных › Эллиптические уравнения

В первой строке листинга задается значение M=32, в двух следующих строках создается матрица правой части уравнения Пуассона, состоящая из всех нулевых элементов, за исключением одного, задающего расположение источника. В последней строке матрице G присваивается результат действия функции multigrid. Обратите внимание, первый ее аргумент сопровождается знаком "минус", что соответствует записи правой части уравнения Пуассона (11). Графики решения показаны на рис. 13.16 и 13.17 в виде трехмерной поверхности и линий уровня, соответственно.

Иллюстрированный самоучитель по MathCAD 11 › Дифференциальные уравнения в частных производных › Эллиптические уравнения
Рис. 13.16. График поверхности решения уравнения Пуассона (листинг 13.6)

Иллюстрированный самоучитель по MathCAD 11 › Дифференциальные уравнения в частных производных › Эллиптические уравнения
Рис. 13.17. График линий уровня решения уравнения Пуассона (листинг 13.6)

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.