Случайные величины
Для моделирования различных физических, экономических и прочих эффектов широко распространены методы, называемые методами Монте-Карло. Их основная идея состоит в создании определенной последовательности случайных чисел, моделирующей тот или иной эффект, например, шум в физическом эксперименте, случайную динамику биржевых индексов и т. п. Для этих целей в Mathcad имеется ряд встроенных функций, реализующих различные типы генераторов псевдослучайных чисел.
Согласно определению, случайная величина принимает то или иное значение, но какое конкретно, зависит от случайных обстоятельств опыта и заранее точно предсказано быть не может. Можно лишь говорить о вероятности P(Xк) принятия случайной дискретной величиной того или иного значения хк, или о вероятности попадания непрерывной случайной величины в тот или иной числовой интервал (х,х+dх). Вероятность Р(ХК) или P(X) (dх), соответственно, может принимать значения от о (такое значение случайной величины совершенно невероятно) до i (случайная величина заведомо примет значение от х до х+dх). Соотношение Р(ХК) называют законом распределения случайной величины, а зависимость P(х) между возможными значениями непрерывной случайной величины и вероятностями попадания в их окрестность называется ее плотностью вероятности (probability density).
В Mathcad имеется ряд встроенных функций, задающих используемые в математической статистике законы распределения. Они вычисляют как значение плотности вероятности различных распределений по значению случайной величины х, так и некоторые сопутствующие функции. Все они, по сути, являются либо встроенными аналитическими зависимостями, либо специальными функциями. Большой интерес представляет наличие генераторов случайных чисел, создающих выборку псевдослучайных данных с соответствующим законом распределения.
Рассмотрим подробно возможности Mathcad на нескольких наиболее популярных законах распределения, а затем приведем перечень всех распределений, встроенных в Mathcad.