Коэффициенты уверенности и условные вероятности
Адаме показал, что если используется простая вероятностная модель на основе правила Байеса, то в системе MYCIN коэффициенты уверенности гипотез не соответствуют вероятностям гипотез при заданных признаках [Adams, 1976]. На первый взгляд, если коэффициенты уверенности используются только для упорядочения альтернативных гипотез, это не очень страшно. Но Адаме также показал, что возможна ситуация, когда при использовании коэффициентов уверенности две гипотезы будут ранжированы в обратном порядке по отношению к соответствующим вероятностям. Рассмотрим этот вопрос подробнее.
Обозначим через Р(h) субъективное, т.е. составленное на основе заключения эксперта, значение вероятности того, что гипотеза h справедлива, т.е. значение Р(Н) отражает степень уверенности эксперта в справедливости гипотезы h. Усложним положение дел и добавим новый признак е в пользу этой гипотезы, такой что P(h | е) > Р(h). Степень доверия эксперта к справедливости гипотезы увеличится, и это увеличение выразится отношением:
MB(h,e)= [P(h|e)-P(h)]/[1-P(h)], где MB означает относительную меру доверия.
Если же признак е свидетельствует против гипотезы h, т.е. P(h | е) < P(h), то увеличится мера недоверия эксперта к справедливости этой гипотезы. Меру недоверия MD можно выразить следующим отношением:
MD(h, e) =[P(h)-P(h|e) ] / P(h)].
Адаме обратил внимание на то, что уровни доверия к одной и той же гипотезе с учетом разных дополнительных признаков не могут быть определены независимо. Если некоторый признак является абсолютным диагностическим индикатором конкретного заболевания, т.е. если все пациенты с симптомом s1 страдают заболеванием dj, то никакие другие признаки уже не могут изменить диагноз, т.е. уровень доверия к выдвинутой гипотезе. Другими словами, если существует пара признаков s1 и s 2 и:
P(di|s1)=P(di|S1^S2)=1, то P(di|s2)= P(dl).
Адаме также критически отнесся к объединению (конъюнкции) гипотез. Модель, положенная в основу MYCIN, предполагает, что уровень доверия к сочетанию гипотез d1 ^ d2 должен соответствовать наименьшему из уровней доверия отдельных гипотез, а уровень недоверия – наибольшему из уровней недоверия отдельных гипотез. Предположим, что гипотезы d1 и d 2 не только не независимы, но и взаимно исключают друг друга. Тогда P(d1 ^ d2 | е) = 0 при наличии любого признака е и независимо от степени доверия или недоверия к d1 или d2.
Бучанан и Шортлифф определили коэффициент уверенности как некий артефакт, который позволяет численно оценить комбинацию уровней доверия или недоверия к гипотезам [Buchanan and Shortliffe, 1984, p. 249]. Он представляет собой разницу между мерой доверия и недоверия:
CF(h, еа ^ ef ) = MB(h, ef) – MD(h, ea), где ef – признак, свидетельствующий в пользу гипотезы h, a ea – признак, свидетельствующий против гипотезы h. Однако полученное таким образом значение отнюдь не эквивалентно условной вероятности существования гипотезы h при условии еа ^ ef, которое следует из правила Байеса:
P(h|ea^ef)=[ P(ea^ef | h)P(h) ]/[P (ea^ef ) ].
Таким образом, хотя степень доверия, связанная с определенным правилом, и может быть соотнесена с субъективной оценкой вероятности, коэффициент уверенности является комбинированной оценкой. Его основное назначение состоит в следующем:
- управлять ходом выполнения программы при формировании суждений;
- управлять процессом поиска цели в пространстве состояний: если коэффициент уверенности гипотезы оказывается в диапазоне [+0.2, -0.2], то поиск блокируется;
- ранжировать набор гипотез после обработки всех признаков.
Адаме, однако, показал, что ранжирование гипотез на основе коэффициентов уверенности может дать результат, противоположный тому, который будет получен при использовании вероятностных методов. Он продемонстрировал это на следующем примере.
Положим, что d1u d2 – это две гипотезы, а е – признак, свидетельствующий как в пользу одной гипотезы, так и в пользу другой. Пусть между априорными вероятностями существует отношение P(d1) > P(d2) и P(d\ \ е) > P(d2 | е). Другими словами, субъективная вероятность справедливости гипотезы d\ больше, чем гипотезы d2, причем это соотношение сохраняется и после того, как во внимание принимается дополнительный признак. Адаме показал, что при этих условиях возможно обратное соотношение CF(d1, е) < CF(d2, е) между коэффициентами уверенности гипотез.