Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по введению в экспертные системы

Методика Перла

Альтернативой теории Демпстера-Шефера является методика Перла [Pearl, 1986], в которой свидетельства учитываются на основе Байесовского подхода к группированию и распространению влияния свидетельств на достоверность гипотез. Как и в методике, предложенной Гордоном (Gordon) и Шортлиффом (Shortliffe), предполагается, что в пространстве гипотез выделено некоторое подмножество гипотез, представляющих интерес в определенном семантическом контексте, причем это подмножество имеет иерархическую структуру.

Предполагается также, что еще до получения свидетельств с каждой отдельной гипотезой связано определенное значение степени доверия к ее правдоподобности. Перл не уточняет, каким именно способом формируются эти исходные значения, но скорее всего это должен сделать эксперт в предметной области при формулировке гипотез.

От эксперта также требуется выделить множество гипотез S, на которые непосредственно распространяется определенное множество свидетельств Е. Если свидетельства из Е непосредственно влияют на гипотезы из S, то должен существовать какой-то причинный механизм, связывающий каждый член множества S со свидетельствами, причем он является уникальным для каждого из них. Однако сами по себе свидетельства в множестве Е не несут никакой информации, которая позволила бы нам отдать предпочтение одному из членов S перед другими.

Это отображение множеств друг на друга позволяет ввести понятие условной независимости между свидетельствами и отдельными гипотезами hi:

Р(Е | S, hi) = Р(Е | S, h1), для всех hiИллюстрированный самоучитель по введению в экспертные системы › Сети доверия › Методика Перла S.

С помощью отношения вероятностей можно количественно оценить степень, с которой свидетельства подтверждают или опровергают множество гипотез S:лS=[P(E|S)] / [P(E|-S)].

Влияние свидетельств Е на множество S вычисляется следующим образом. Каждая отдельная гипотеза hi, принадлежащая множеству S, получает вес Wi = лS , в то время как каждая гипотеза из дополняющего множества SC получает вес Wi = 1. Все это выполняется на фазе распределения весов.

Затем, когда наступает фаза обновления, вычисляется новое значение функции доверия ВЕL'(hi) по ее прежнему значению ВЕL(hi):

BEL'(hi) = P(hi | Е) = a s WiВЕL(hi), где a s – коэффициент нормализации, заданный соотношением a s =(Иллюстрированный самоучитель по введению в экспертные системы › Сети доверия › Методика Перла i[WiBEL'(hi))-1. ].

Таким образом, степень доверия, назначенная множеству гипотез, распределяется между членами этого множества как функция их априорных вероятностей. В то же время степень доверия, назначенная группе гипотез, является суммой соответствующих показателей элементов этой группы. Обновление значений показателей доверия может выполняться рекурсивно, т.е. апостериорные оценки, полученные на основании одних свидетельств, могут использоваться в качестве априорных оценок для следующего цикла обновления при получении новых свидетельств.

Вся схема вычислений основана на предположении об условной независимости и соблюдении симметричности множеством SC, дополняющим S. Из соотношения:

Р(Е | SC, hi) = Р(Е | SC, hi) для всех hiИллюстрированный самоучитель по введению в экспертные системы › Сети доверия › Методика Перла SC следует, что Р(Е | hi) = Р(Е | S), если hi, hiИллюстрированный самоучитель по введению в экспертные системы › Сети доверия › Методика Перла S, иначе Р(Е | SC).

Из этого соотношения и правила Байеса следует, что P(h,| Е) = asXsP(h,), если Л, е S, иначе asP(h,).

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.