Методика Перла
Альтернативой теории Демпстера-Шефера является методика Перла [Pearl, 1986], в которой свидетельства учитываются на основе Байесовского подхода к группированию и распространению влияния свидетельств на достоверность гипотез. Как и в методике, предложенной Гордоном (Gordon) и Шортлиффом (Shortliffe), предполагается, что в пространстве гипотез выделено некоторое подмножество гипотез, представляющих интерес в определенном семантическом контексте, причем это подмножество имеет иерархическую структуру.
Предполагается также, что еще до получения свидетельств с каждой отдельной гипотезой связано определенное значение степени доверия к ее правдоподобности. Перл не уточняет, каким именно способом формируются эти исходные значения, но скорее всего это должен сделать эксперт в предметной области при формулировке гипотез.
От эксперта также требуется выделить множество гипотез S, на которые непосредственно распространяется определенное множество свидетельств Е. Если свидетельства из Е непосредственно влияют на гипотезы из S, то должен существовать какой-то причинный механизм, связывающий каждый член множества S со свидетельствами, причем он является уникальным для каждого из них. Однако сами по себе свидетельства в множестве Е не несут никакой информации, которая позволила бы нам отдать предпочтение одному из членов S перед другими.
Это отображение множеств друг на друга позволяет ввести понятие условной независимости между свидетельствами и отдельными гипотезами hi:
Р(Е | S, hi) = Р(Е | S, h1), для всех hi S.
С помощью отношения вероятностей можно количественно оценить степень, с которой свидетельства подтверждают или опровергают множество гипотез S:лS=[P(E|S)] / [P(E|-S)].
Влияние свидетельств Е на множество S вычисляется следующим образом. Каждая отдельная гипотеза hi, принадлежащая множеству S, получает вес Wi = лS , в то время как каждая гипотеза из дополняющего множества SC получает вес Wi = 1. Все это выполняется на фазе распределения весов.
Затем, когда наступает фаза обновления, вычисляется новое значение функции доверия ВЕL'(hi) по ее прежнему значению ВЕL(hi):
BEL'(hi) = P(hi | Е) = a s WiВЕL(hi), где a s – коэффициент нормализации, заданный соотношением a s =( i[WiBEL'(hi))-1. ].
Таким образом, степень доверия, назначенная множеству гипотез, распределяется между членами этого множества как функция их априорных вероятностей. В то же время степень доверия, назначенная группе гипотез, является суммой соответствующих показателей элементов этой группы. Обновление значений показателей доверия может выполняться рекурсивно, т.е. апостериорные оценки, полученные на основании одних свидетельств, могут использоваться в качестве априорных оценок для следующего цикла обновления при получении новых свидетельств.
Вся схема вычислений основана на предположении об условной независимости и соблюдении симметричности множеством SC, дополняющим S. Из соотношения:
Р(Е | SC, hi) = Р(Е | SC, hi) для всех hi SC следует, что Р(Е | hi) = Р(Е | S), если hi, hi S, иначе Р(Е | SC).
Из этого соотношения и правила Байеса следует, что P(h,| Е) = asXsP(h,), если Л, е S, иначе asP(h,).