Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по MathCAD 11

Решение краевых задач с дополнительным условием в промежуточной точке

Иногда дифференциальные уравнения определяются с граничными условиями не только на концах интервала, но и с дополнительным условием в некоторой промежуточной точке расчетного интервала. Чаше всего такие задачи содержат данные о негладких в некоторой внутренней точке интервала решениях. Для них имеется встроенная функция bvaif it, также реализующая алгоритм стрельбы.

  • bvalfit(z1,z2,x0,x1,xf,D,load1,load2,score) – поиск вектора недостающих граничных условий для краевой задачи с дополнительным условием в промежуточной точке для системы N ОДУ;
    • z1 – вектор, присваивающий недостающим начальным условиям на левой границе интервала начальные значения;
    • z2 – вектор того же размера, присваивающий недостающим начальным условиям на правой границе интервала начальные значения;
    • х0 – левая граница расчетного интервала;
    • x1 – правая граница расчетного интервала;
    • xf – точка внутри интервала;
    • D(х,у) – векторная функция, описывающая систему N ОДУ, размера NXI и двух аргументов – скалярного х и векторного у. При этом у – это неизвестная векторная функция аргумента х того же размера NXI;
    • loadi(x0,z) – векторная функция размера NXI левых граничных условий, причем недостающие начальные условия поименовываются соответствующими компонентами векторного аргумента z;
    • load2 (x1,z) – векторная функция размера NXI правых граничных условий, причем недостающие начальные условия поименовываются соответствующими компонентами векторного аргумента z;
    • score (xf, у) – векторная функция размера NXI, выражающая внутреннее условие для векторной функции у в точке xf.

Обычно функция bvalf it применяется для задач, в которых производная решения имеет разрыв во внутренней точке xf. Некоторые из таких задач не удается решить обычным методом пристрелки, поэтому приходится вести пристрелку сразу из обеих граничных точек. В этом случае дополнительное внутреннее условие в точке xf является просто условием сшивки в ней левого и правого решений. Поэтому для данной постановки задачи оно записывается в форме score(xf,y): = y.

Рассмотрим действие функции bvaifit на знакомом примере модели взаимодействия пучков света (см. рис. 12.1), предположив, что в промежутке между xf=0.5 и x1=1.0 находится другая, оптически более плотная среда с другим коэффициентом ослабления излучения а(х)=3. Соответствующая краевая задача решена в листинге 12.3, причем разрывный показатель ослабления определяется в его второй строке.

Листинг 12.3. Краевая задача с дополнительным условием в промежуточной точке:

Иллюстрированный самоучитель по MathCAD 11 › Краевые задачи › Решение краевых задач с дополнительным условием в промежуточной точке

Система уравнений и левое краевое условие вводится так же, как и в предыдущем листинге для функции sbvai. Обратите внимание, что таким же образом записано и правое краевое условие. Для того чтобы ввести условие отражения на правой границе, пришлось определить еще один неизвестный пристрелочный параметр z20. Строка листинга, в которой определена функция score, задает условие стрельбы – сшивку двух решений в точке xf. В самой последней строке листинга выдан ответ – определенные численным методом значения обоих пристрелочных параметров, которые объединены в вектор и (мы применили в предпоследней строке операцию транспонирования, чтобы результат получился в форме вектора, а не матрицы-строки).

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.