Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по SPSS 10/11

Принцип кластерного анализа

Вы увидите четыре отдельных отчетливых группировки точек, три из них в нижней половине диаграммы и одну в верхнем правом углу. Следовательно, переменные kalorien (калории) и kosten (расходы), явно распадаются на четыре различных кластера по сортам пива.

Сорта пива, которые по значениям двух рассмотренных переменных похожи друг на друга, принадлежат к одному кластеру; сорта пива, находящиеся в различных кластерах, не похожи друг на друга. Решающим критерием для определения схожести и различия двух сортов пива является расстояние между точками на диаграмме рассеяния, соответствующими этим сортам.

Самой распространенной мерой для определения расстояния между двумя точками на плоскости, образованной координатными осями х и у, является евклидова мера:

Иллюстрированный самоучитель по SPSS 10/11 › Кластерный анализ › Принцип кластерного анализа

Где x1: и хn – координаты первой точки, у: и уn – координаты второй точки.

В соответствии с этой формулой расстояние между сортами пива Budweisei Heineken составляет:

Иллюстрированный самоучитель по SPSS 10/11 › Кластерный анализ › Принцип кластерного анализа

Это расстояние лишь незначительно превосходит то, которое получилось бы, если бы для расчета была взята только одна переменная – kalorien (калории):

| 144 - 152 | = 8

Данный эффект можно объяснить тем, что уровни значений переменных kalorien (калории) и kosten (расходы) очень сильно отличаются друг от друга: у переменной kosten (расходы) значения меньше 1, а у переменной kalorien (калории) больше 100. Согласно формуле евклидовой меры, переменная, имеющая большие значения, практически полностью доминирует над переменной с малыми значениями.

Решением этой проблемы является рассмотренное в главе 19.1 z-преобразование (стандартизация) значений переменных. Стандартизация приводит значения всех преобразованных переменных к единому диапазону значений, а именно от -3 до +3.

Если Вы произведете такое преобразование для переменных kalorien (калории) и kosten (расходы), то для пива Budweiser получите стандартизованные значения равные 0.400 и – 0.469 соответственно, а для пива Heineken стандартизированные значения 0.649 и 1.848 соответственно.

Тогда расстояние между двумя сортами пива получится равным:

Иллюстрированный самоучитель по SPSS 10/11 › Кластерный анализ › Принцип кластерного анализа

Таким образом, при помощи диаграммы рассеяния для двух переменных: kalorien (калории) и kosten (расходы), мы провели самый простой кластерный анализ. Мы выбрали такой вид графического представления, с помощью которого можно было бы отчетливо распознать группирование в кластеры (четыре в нашем случае).

К сожалению, столь отчетливая картина отношений между переменными, как в приведенном примере, встречается очень редко. Во-первых, структуры кластеров, если вообще таковые имеются, не так четко разделены, особенно при наличии большого количества наблюдений. Скорее наоборот, кластеры размыты и даже проникают друг в друга. Во-вторых, как правило, кластерный анализ проводится не с двумя, а с намного большим количеством переменных.

При кластерном анализе с тремя переменными можно ввести еще одну ось – ось z и рассматривать размещение наблюдений, а также проводить расчет расстояния по формуле евклидовой меры в трехмерном пространстве.

При наличии более трех переменных определение расстояния между двумя точками х и у в любом n-мерном пространстве для математиков не представляет особого труда. Формула Евклида в таких случаях приобретает следующий вид:

Иллюстрированный самоучитель по SPSS 10/11 › Кластерный анализ › Принцип кластерного анализа

Наряду с евклидовой мерой расстояния, SPSS предлагает и другие дистанционные меры, а также меры подобия. Так что кластерный анализ можно проводить не только с переменными, относящимися к интервальной шкале, как в приведенном случае, но и с дихотомическими переменными, к примеру. В таком ситуации применяется уже другие дистанционные меры и меры подобия (см. разд. 20.3).

При проведении кластерного анализа отдельные кластеры могут формироваться при помощи пошагового слияния, для которого существует ряд различных методов (см. разд. 20.4). Важную роль играют иерархические и партиционные методы, причем последние применяются в подавляющем большинстве случаев. Оба эти метода можно задействовать, если пройти через меню Analyze (Анализ) › Classify (Классифицировать)

Они помещены в этом меню под именами Hierarchical Cluster… (Иерархический кластер) и K-Means Cluster… (Кластерный анализ методом к-средних).

Рассмотрим сначала иерархический кластерный анализ, причем начнем с простого примера с 17 сортами пива.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.