Приближенное решение алгебраических уравнений
Пока мы рассматривали пример нахождения существующего решения уравнения. Приведем теперь пример нахождения функцией Minerr приближенного решения не имеющего корней уравнения (листинг 6.10), а также несовместной системы уравнений и неравенств (листинг 6.11). Решение, выдаваемое функцией Minerr, минимизирует невязку данной системы. Как видно из листингов, в качестве результата выдаются значения переменных, наилучшим образом удовлетворяющие уравнению и неравенствам внутри вычислительного блока.
Внимание!
Полученное в листинге 6.11 решение не удовлетворяет неравенствам, составляющим задачу. Это и неудивительно, поскольку точного решения системы нет, и в качестве ответа Mathcad выдает значения аргументов, минимизирующих норму общей невязки (не отдавая предпочтения ни уравнению, ни неравенствам).
Листинг 6.10. Приближенное решение уравнения x2 +y2 +1=0:
Листинг 6.11. Приближенное решение несовместной системы уравнений и неравенств:
Внимательный читатель может обнаружить, что решение, выдаваемое функцией Minerr в рассматриваемом примере, не является единственным, поскольку множество пар значений (х,у) в равной степени минимизирует невязку данной системы уравнений и неравенств. Поэтому для различных начальных значений будут получаться разные решения, подобно тому, как разные решения выдаются функцией Find в случае бесконечного множества корней (см. разд. 5.2.4). Еще более опасен случай, когда имеются всего несколько локальных минимумов функции невязки. Тогда неудачно выбранное начальное приближение приведет к выдаче именно этого локального минимума, несмотря на то, что другой (глобальный) минимум невязки может удовлетворять системе гораздо лучше.
В завершение раздела сделаем очень важное замечание, связанное с возможностью использования встроенной функции Minerr в символьных расчетах. Как и функция решения алгебраических систем Find, она может применяться без предварительного присвоения каких-либо начальных значений любым переменным, входящим в уравнение, как это проиллюстрировано листингом 6.12, решающим ту же самую задачу аналитически. Замечательно, что в результате получается не одно решение, а все семейство решений, одинаково минимизирующее невязку.
Листинг 6.12. Аналитическое приближенное решение уравнения kx2 +y2 +1=0: