Выбор визуализатора
Maya Hardware
При аппаратной визуализации используются вычислительные мощности видеокарты, а также программные средства Maya и драйверы. Этот процесс похож на то, что вы видите на экране при запуске компьютерной игры. Данные, выводимые игрой, обрабатываются процессором видеокарты в реальном времени. Аппаратная визуализация происходит быстрее программной, однако она лишена части присущих последней функций и не позволяет получить изображение такого же высокого качества.
Сравнить результат визуализации, получаемый с помощью аппаратного и программного методов, можно на рис. 11.5. Вы можете лично убедиться, что выигрыш во времени визуализации сопровождается потерей качества.
Рис. 11.5. Сравнение результатов визуализации сцены: слева– с помощью алгоритма Maya Hardware; справа – с помощью алгоритма Maya Software
Для активизации аппаратного визуализатора достаточно выбрать вариант Maya Hardware (Аппаратный визуализатор) в раскрывающемся списке Render Using (Визуализировать с помощью), расположенном в верхней части окна диалога Render Global Settings (Общие параметры визуализации). Качество изображения определяется с помощью раскрывающегося списка Number of Samples (Число образцов), расположенного на вкладке Maya Hardware (Аппаратный визуализатор).
Mental Ray
Модуль Mental Ray лучше всего справляется с имитацией реальных свойств световых лучей. Принцип его действия основан на процессе трассирования, но создатели данного модуля пошли дальше и добавили к световым лучам карты фотонов. То есть визуализатор Mental Ray отслеживает путь фотонов, испускаемых источником света, и записывает информацию об их поведении. Это позволяет воспроизводить каустические эффекты (caustics) и перепое излучения (radiosity), известный также как глобальная освещенность (global illumination).
Каустические эффекты представляют собой рассеяние отраженных лучей света, в том числе и через полупрозрачные объекты. Примером каустического эффекта могут служить блики солнечного света на дне находящегося на открытом воздухе бассейна или блики отраженных от водной поверхности солнечных лучей на потолке помещения, в котором находится бассейн. Глобальной освещенностью называется эффект отражения света поверхностями объектов. Скажем, если поместить окрашенные в красный цвет сферы внутрь серого куба и осветить этот куб сверху, боковые и нижняя поверхности куба должны приобрести красноватый оттенок. Световые лучи, отражаясь от поверхности сфер, переносят их цвет на окружающие объекты. При этом свет, отраженный от дна куба, увеличивает освещенность нижней части сфер.
Рассмотрим рис. 11.6 и 11.7, на которых изображен результат визуализации сцены, содержащей примерно дюжину помещенных внутрь закрытого ящика стеклянных сфер. В "потолке" этого ящика находятся четыре отверстия, через которые его внутреннее пространство освещается двумя расположенными снаружи источниками света типа Spot (Прожектор) с включенным режимом формирования теней.