Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по цифровой графике

Запись целых чисел в двоичной системе счисления. Двоичные коды десятичных чисел.

Арифметика едина, и все ее законы едины, независимо от системы счисления. У нас есть только две цифры, но с их помощью необходимо уметь записывать любое число, расположенное на длинной числовой оси.

Когда закончились двоичные цифры, надо снова начинать с нуля, записав в следующую позицию "единицу". Рассуждая таким образом, мы получаем, что десятичное число "2" у нас будет представлено двоичным числом "10", т. е. "двоичной десяткой":

12 + 1 = 102.

Далее, число "3" десятичной системы станет в двоичной системе числом "11", т. к.

102 + 1 = 112.

Замечание
Не следует удивляться тому, что в десятичной записи число "3" представлено одной цифрой (одноразрядное), а в двоичной ("11") оно представлено двумя цифрами (двухразрядное). Более того, следует учесть, что далее этот разрыв будет увеличиваться
.

Следующий шаг снова требует внимания:

112 + 1 =…

Теперь к числу "И" в двоичной системе прибавляем "1": сумма "1 + 1" дает "0", но мы при этом переносим "1" в следующий разряд. В следующем разряде снова получается сумма "1 + 1", т. е. опять "О", значит, создаем еще один разряд и переносим единицу в этот разряд – в итоге получается двоичное число "100", т. е. "двоичная сотня":

112 + 1 = 1002.

Десятичное число "4" в двоичной системе представляется числом "100".

Далее, десятичное число "5" – это двоичное число "101", десятичное число "6" – это двоичное число "110", а десятичное число "7" – это двоичное число "111".

Снова добавляется разряд, следовательно, десятичное число "8" – это уже двоичное число "1000" ("двоичная тысяча"), десятичное число "9" – это двоичное число "1001" и, наконец, десятичное число "10", у него два разряда, представляется двоичным числом "1010", у которого четыре разряда. И так далее (до бесконечности).

Подводя итог математическому упражнению для первого класса, мы можем составить таблицу соответствий десятичных и двоичных чисел, например, в пределах первых двух десятков десятичной системы счисления (табл. 4.3). Читатели, при желании, могут продолжать ее, пока хватит терпения.

Таблица 4.3. Соответствие десятичных и двоичных чисел.

Десятичное число Двоичное число Десятичное число Двоичное число
0 0 11 1011
1 1 12 1100
2 10 13 1101
3 11 14 1110
4 100 15 1111
5 101 16 10000
6 110 17 10001
7 111 18 10010
8 1000 19 10011
9 1001 20 10100
10 1010    

Двоичные коды десятичных чисел

В данный момент самое время вспомнить, зачем мы начали конвертирование десятичных чисел в двоичную систему счисления. Это нам необходимо не для того, чтобы убедиться в универсальности законов арифметики (дизайнеры и так охотно поверят специалистам-математикам), на самом деле, мы составили коды десятичных чисел в двоичной системе счисления, а это уже совсем немало.

Ведь, собственно говоря, приведенные в предыдущем разделе рассуждения уже можно квалифицировать как процесс кодирования, т. е. написание (представление) одного вида информации с помощью другого.

Таким образом, мы получаем возможность передавать любое десятичное число двоичными числами, а следовательно, импульсным способом, т. е. определенным сочетанием импульсов (в этом состоит требование компьютерных технологий).

В табл. 4.3 отражены коды первых двадцати десятичных чисел, которые легко передавать как последовательность импульсов.

Какое неудобство двоичной системы счисления бросается сразу в глаза? Заметно, что двоичные числа гораздо длиннее десятичных. Это закон мироздания: экономя на количестве цифр, мы "расплачиваемся" количеством разрядов.

И для того чтобы двоичные числа было легче воспринимать и отображать, их сжимают в восьмеричную систему счисления, о которой также необходимо сказать несколько слов.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.