Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по цифровой графике

Рациональные кривые

Обратимся к ключевой букве в названии NURBS – "R", что означает "rational" (рациональный). Рациональные кривые, в сравнении с обычными (нерациональными – "non-rational") В-сплайнами, обладают двумя дополнительными и очень важными свойствами:

  • они обеспечивают корректный результат при проекционных трансформациях (например, масштабировании), а нерациональные В-сплайны – только при аффинных трансформациях (например, перемещениях);
  • их можно использовать для моделирования кривых любого вида, включая конические сечения (окружности, эллипсы, параболы и гиперболы).

Эти свойства (кстати, весьма значительные) достигаются за счет четырехмерного представления обычной трехмерной контрольной точки {х, у, z}. Это значит, что каждая контрольная точка представляется четырьмя координатами {х, у, z, w}. Последняя координата w означает вес (weight) контрольной точки, о котором уже упоминалось ранее (вспомним пример с гравитацией или холодильником).

Замечание
"Вес" в математическом смысле – это значение, важность, влияние, которое выражается особой функцией или числовым значением. Это одно из важных понятий в теории принятия решений
.

Изначально координата w равняется единице, но при увеличении этого значения для контрольной точки увеличивается степень ее воздействия на форму кривой и последняя сильнее выгибается в сторону контрольной точки (рис. 12.15).

Иллюстрированный самоучитель по цифровой графике › Принципы векторной графики › Рациональные кривые
Рис. 12.15. Изменение формы кривой при изменении веса контрольной точки

Замечание
Важно заметить, что существенным является только относительное изменение весов контрольных точек. Если вдвое увеличить веса всех контрольных точек, то форма кривой не изменится
.

Пример

Квадратичная (второй степени) NURBS-кривая определяется тремя контрольными точками (рис. 12.16). У всех трех кривых узловой вектор имеет вид:

{0.0, 0.0, 0.0, 1.0, 1.0, 1.0}

Веса первой и последней контрольных точек у каждой кривой равны 1. Если вес центральной вершины меньше 1, то результирующая кривая представляет собой сегмент эллипса (рис. 12.16, а). Если ее вес равняется 1, образуется парабола (рис. 12.16, б). Если же ее вес гораздо больше 1, то кривая преобразуется в гиперболу (рис. 12.16, в).

Иллюстрированный самоучитель по цифровой графике › Принципы векторной графики › Рациональные кривые
Рис. 12.16. NURBS-кривые с различными весами центральной контрольной точки

При всех своих непревзойденных свойствах NURBS-кривые все же обладают следующим громадным недостатком: расширенные возможности не могли не сказаться на уровне и сложности инструментария для их построения, а это, в свою очередь, требует от дизайнера повышенных условий для освоения, не говоря уже о необходимости определенного уровня математической подготовки (иначе трудно ожидать, что удастся разобраться во всех преимуществах и получить творческую свободу).

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.