Сравнение средних значений выборок
Сравнение средних значений различных выборок относится к наиболее часто применяемым методам статистического анализа. При этом всегда должен быть выяснен вопрос, можно ли объяснить имеющееся различие средних значений статистическими колебаниями или нет. В последнем случае говорят о значимом различии.
При сравнении средних значений выборок предполагается, что обе выборки подчиняются нормальному распределению. Если это не так, то вычисляются медианы и для сравнения выборок используется непараметрический тест.
При сравнении средних значений выборок выделяют четыре различные тестовые ситуации:
- сравнение двух независимых выборок
- сравнение двух зависимых (спаренных) выборок
- сравнение более двух независимых выборок
- сравнение более двух зависимых выборок
В этих ситуациях соответственно применяются следующие статистические тесты:
- t-тест для независимых выборок (тест Стьюдента)
- t-тест для зависимых выборок
- однофакторный дисперсионный анализ
- однофакторный дисперсионный анализ с повторными измерениями
Первые три из этих тестов вызываются с помощью меню Analyze (Анализ) › Compare Means (Сравнение средних)
Чтобы провести однофакторный дисперсионный анализ с повторными измерениями (очень часто встречающаяся тестовая ситуация) надо вызвать команду меню Analyze (Анализ) › General Linear Model (Общая линейная модель) › Repeated Measures… (Повторные измерения)
Сначала мы рассмотрим тесты, вызов которых происходит посредством пункта меню Compare Means. Для примера мы возьмем данные исследования гипертонии в файле hyper.sav (см. главу 9).
- Загрузите файл hyper.sav.
- Выберите в меню команды Analyze (Анализ) › Compare Means (Сравнение средних)
В подменю содержатся, в частности, t-тест для независимых выборок (Independent-Samples Т Test), t-тест для парных выборок (Paired-Samples Т Test) и однофакторный дисперсионный анализ (ANOVA) для сравнения нескольких независимых выборок (One-Way ANOVA).
Еще один тест, включенный в данное подменю, это t-тест случайной выборки, используемый для сравнения с заданным значением (One-Sample T Test), рассматривается в разделе 13.5. В подпункте меню Means… (Средние) вычисляются средние значения раздельно по категориям группирующей переменной; здесь также можно проверить существование значимого различия при помощи однофакторного дисперсионного анализа. В этом отношении данный подпункт предоставляет меньше возможностей, чем подпункт One-Way ANOVA…, и поэтому здесь не рассматривается.