Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по MathCAD 11

Функции Бесселя-Кельвина. Сферические функции Бесселя.

Комплексная комбинация функций Бесселя-Кельвина вида ber(n,x) + i bei(n,x) является решением соответствующего ОДУ, зависящего от параметра n. Вид графиков функции bei для n=1 и 2 показан на рис. 10.6.

  • bei (n,x) – мнимая часть функции Бесселя-Кельвина порядка n;
  • ber(n,x) – действительная часть функции Бесселя-Кельвина порядка n;
    • n – порядок (безразмерное неотрицательное целое число);
    • х – действительный безразмерный скаляр.

Иллюстрированный самоучитель по MathCAD 11 › Специальные функции › Функции Бесселя-Кельвина. Сферические функции Бесселя.
Рис. 10.6. Функции Бесселя-Кельвина

Сферические функции Бесселя

График сферических функций Бесселя первого порядка показан на рис. 10.7.

  • js(n, z) – сферическая функция Бесселя первого рода порядка n, х>0;
  • ys (n, z) – сферическая функция Бесселя второго рода порядка n, х>0;
    • n – порядок (целое число), n>200;
    • z – действительный или комплексный безразмерный скаляр, х>0.

Иллюстрированный самоучитель по MathCAD 11 › Специальные функции › Функции Бесселя-Кельвина. Сферические функции Бесселя.
Рис. 10.7. Сферические функции Бесселя первого порядка

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.