Число делителей τ(n). Числа с заданным числом делителей.
Так и есть! Теперь мы можем предположить, что Мерсенн указал число вида n-y. Чтобы найти х и у, достаточно решить уравнение (х+1)(у+1)-1 = 1000000 в натуральных числах. Приведем это уравнение к виду (х+1)ОН-1) = 1000001. Найдем каноническое разложение числа 1000001.
Factorlnteger[
1000001
]
{{
101.1
),{
9901.1
})
Как видите, 1000001 = 101x9901. Так что либо х+1 = 101 и у+1 = 9901, либо jc+1 = 9901 и у+1 = 101. Иными словами, либо х -100 и у = 9900, либо х = 9900 и у -100. Как видим, вариантов не много. Все зависит от того, какое число меньше: 29900*3100 или 2100 -З9900. Конечно, 29900* 3100< 2100*З9900. Это очевидно, и тут Мерсенн ошибиться не мог. Так что х = 9900 и у = 100. Но это значит, что найденное Мерсенном число можно записать так: 29m -31m = (2100)"'(323)4. Так что опечатка, оказывается, в показателе степени: вместо 99 там указано 66. Если учесть технологию верстки книг до середины прошлого столетия (текст приходилось набирать в "перевернутом" виде), то нужно признать, что цифры 6 и 9 можно было запросто перепутать. Поэтому такая ошибка вполне вероятна. Давайте теперь проверим, что мы не ошиблись и найденное нами число действительно имеет миллион (не считая самого себя) делителей.
nl
=
1267650600228229401496703205376
;
n2
=
n1
^
99
;
n3
=
847288609443
;
n4
=
n3
^
4
Сошлось, как в аптеке! Но беспокоит вот что: найденное нами число больше того, которое было указано Вальтером Литцманом. А указанное им число имело 2035 знаков, хотя он указал, что должно быть всего лишь 2048 цифр. Давайте посмотрим, какое число получилось у нас.