Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Maple 6/7

Углубленный анализ дифференциальных уравнений

Дадим небольшой комментарий. Нетрудно заметить, что точное аналитическое решение весьма сложно и содержит специальные функции Бесселя и гамма-функции. При порядке полинома 8 (он несколько меньше заданного максимального) решение практически совпадает с точным до значений t < 2, а при максимальном заданном порядке 60 область совпадения расширяется до значений t < 5.5. Затем приближенное решение резко отходит от точного.

Иллюстрированный самоучитель по Maple 6/7 › Решение дифференциальных уравнений › Углубленный анализ дифференциальных уравнений

Иллюстрированный самоучитель по Maple 6/7 › Решение дифференциальных уравнений › Углубленный анализ дифференциальных уравнений
Рис. 13.17. Примеры решения ДУ третьего порядка

Этот пример, с одной стороны, иллюстрирует хорошо известный факт – быстрое нарастание погрешности полиномиального приближения за пределами области хорошего совпадения решений. С другой стороны, он показывает, что степень полинома более 60 (и даже выше) вовсе не так уж бесполезна, как это утверждается во многих статьях и книгах по полиномиальному приближению. Точность полиномиальных вычислений Maple 7 достаточно высока, чтобы обеспечить получение приближенных полиномиальных выражений со степенью порядка десятков и иногда даже сотен. Другое дело, что столь "длинный" полином не всегда удобен для аналитических расчетов, даже несмотря на его структурную простоту.

Что нового мы узнали?

В этим уроке мы научились:

  • Использовать основную функцию решения дифференциальных уравнений dsolve.
  • Решать дифференциальные уравнения первого порядка.
  • Решать дифференциальные уравнения второго порядка.
  • Решать системы дифференциальных уравнений,.
  • Выполнять численное решение дифференциальных уравнений.
  • Решать дифференциальные уравнения с кусочными функциями.
  • Использовать структуру неявного представления дифференциальных уравнений DESol
  • Применять инструментальный пакет решения дифференциальных уравнений DEtools
  • Осуществлять графическое представление решений дифференциальных уравнений.
  • Осуществлять углубленный анализ аналитических решений дифференциальных уравнений.
Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.