Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Maple 6/7

Углубленный анализ дифференциальных уравнений

Задачи углубленного анализа ДУ

Maple 7 существенно доработана по части решения дифференциальных уравнений (ДУ) и систем с ДУ. Эта доработка прежде всего направлена на получение верных решений как можно большего числа ДУ разных классов и систем с ДУ.

В частности, расширен круг нелинейных дифференциальных уравнений, для которых Maple7способна дать аналитические решения.

Весь арсенал средств решения ДУ-и методика их применения вполне заслуживают отражения в отдельной большой книге. Мы ограничимся описанием только трех средств системы Maple 7 – проверки ДУ на автономность, углубленным анализом решения с помощью контроля уровня выхода и получением приближенного полиномиального аналитического решения. Более подробное знакомство с новыми возможностями решения дифференциальных уравнений можно получить из соответствующей статьи справки symbolics в разделе What is new.

Проверка ДУ на автономность

Одиночное дифференциальное уравнение или система дифференциальных уравнений называются автономными, если их правая часть явно не зависит от независимой переменной. Для автономных дифференциальных уравнений или систем при построении графиков решений функцией DEplot не обязательно задавать начальные условия, но нужно указывать диапазон изменения искомых переменных.

Для проверки уравнений (или систем) на автономность используется функция:

autonomous(des,vars,ivar)

Где des – заданное дифференциальное уравнение или (в виде списка) система дифференциальных уравнений; vars – зависимые переменные; ivar – независимая переменная. Если система автономна, то эта функция возвращает true, в противном случае false.

Примеры:

Иллюстрированный самоучитель по Maple 6/7 › Решение дифференциальных уравнений › Углубленный анализ дифференциальных уравнений

В первом случае система дифференциальных уравнений (модель. Лотки-Вольтерра) автономна, а во втором случае дифференциальное уравнение не автономно.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.