Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Maple 6/7

Примеры решения научно-технических задач

  • Небольшое введение

    Выше при изложении данного учебного курса приводились многие сотни примеров применения системы Maple 7. При этом намеренно подбирались достаточно простые примеры, занимающие немного места и не требующие чрезмерных ухищрений для решения.
  • Выбор аппроксимации для сложной функции. Задание исходной функции и построение ее графика.

    Трудно представить себе область более широкую и считаемую, чем аппроксимация различных функциональных зависимостей. С получения простой аппроксимации сложной зависимости нередко начинаются (а часто и заканчиваются) научные исследования во многих областях как прикладной, так и фундаментальной науки.
  • Аппроксимации рядом Тейлора

    Начнем с аппроксимации функции хорошо известным рядом Тейлора степени 8 относительно середины интервала (точки с х=2): | Такой ряд позволяет использовать для вычислений только арифметические действия, что само по себе здорово!
  • Паде-аппроксимация

    Теперь опробуем рациональную аппроксимацию Паде (Fade) функции f(x) степени (4.4). Приближения по этому разложению будут аппроксимировать функцию более точно, и потому ошибки округления в вычислениях станут более заметными. Поэтому зададим еще два дополнительных знака для точности вычислений.
  • Аппроксимация полиномами Чебышева

    Знатоки техники аппроксимации знают, что лучшие приближения на заданном интервале могут быть получены при использовании разложения в ряд Чебышева. Это связано с тем, что ортогональные полиномы Чебышева позволяют получить аппроксимацию, погрешность которой в заданном диапазоне изменения аргумента распределена более равномерно, чем в предшествующих случаях.
  • Аппроксимация Чебышева-Паде

    Теперь рассмотрим еще более точную рациональную аппроксимацию Чебышева-Паде. Это такая рациональная функция r[m, n](х) с числителем степени m и знаменателем степени n такой же, как и для разложения в ряд Чебышева. Функция r [m, n](х) согласуется с разложением в ряд Чебышева f(x) членом степени m+n.
  • Минимаксная аппроксимация

    Классический результат теории аппроксимации заключается в том, что минимакс как наилучшая аппроксимация рациональной функции степени (m, n) достигается, когда кривая ошибки имеет m+n+2 равных по величине колебаний.
  • Эффективная оценка рациональных функций

    Полиномы числителя и знаменателя в минимаксной аппроксимации уже выражены в форме Горнера (то есть в форме вложенного умножения). Оценка полиномом степени n в форме Горнера при n-умножениях и n-суммированиях – это наиболее эффективная схема оценки для полинома в общей форме.
  • Сравнение времен вычислений

    Теперь определим время, необходимое для вычисления функции/(л:) в 1000 точек, используя первоначальное интегральное определение, и сравним его с временем, требующимся для схемы MinimaxApprox в виде непрерывной дроби.
  • Преобразование в код Фортрана или С

    Один из поводов разработки эффективной аппроксимации для вычисления математической функции заключается в создании библиотек подпрограмм для популярных языков программирования высокого уровня, таких как Фортран или С. В Maple имеются функции преобразования на любой из этих языков.
  • Моделирование физических явлений. Расчет траектории камня с учетом сопротивления воздуха.

    Вы хотите метнуть камень в огород вашего вредного соседа? Разумеется, во время его отсутствия. Давайте промоделируем эту ситуацию, предположив два актуальных случая: дело происходит на Луне и на Земле.
  • Движение частицы в магнитном поле

    От реального мира перейдем к микромиру. Пусть микрочастица массой 9* 10-31 кг и зарядом +1.6*10-19 Кл влетает в магнитное поле с индукцией В = 0.1 Тл под углом а=80°. Рассчитаем траекторию движения частицы при начальной скорости Vo= 1*107 м/с: | > restart;
  • Разделение изотопов

    Рассмотрим еще одну классическую задачу ядерной физики – разделение изотопов (атомов с одинаковым зарядом ядра, но разной массой). Для этого используют различные способы. В частности, это может быть масс-спектроскопический метод.
  • Моделирование рассеивания альфа-частиц

    Одним из фундаментальных доказательств существования ядра у атомов стал опыт с бомбардировкой тонкой фольги из металла альфа-частицами с высокой энергией. Если бы "массивных" ядер не существовало, то альфа-частицы должны были бы спокойно пролетать сквозь тонкую фольгу, практически не отклоняясь.
  • Моделирование и расчет электронных схем. Малосигнальный анализ усилителя на полевом транзисторе.

    Нужно ли применять Maple для моделирования и расчета электронных схем? | Нужно ли применять системы компьютерной математики для анализа, расчета и моделирования электронных схем? Ответ на этот вопрос не так прост, как кажется с первого взгляда.
  • Расчет аналогового фильтра на операционном усилителе

    Теперь рассмотрим проектирование аналогового полосового фильтра на операционном усилителе, схема которого приведена на рис. 17.16. | Рис. 17.16. Схема полосового фильтра на интегральном операционном усилителе | Подготовимся к расчету фильтра: | > restart: | Зададим основные уравнения, описывающие работу фильтра на малом сигнале: | Введем круговую частоту: | > omega: = 2*Pi*f;
  • Проектирование цифрового фильтра

    Основной недостаток аналоговых активных фильтров, подобных описанному выше, заключается в их малом порядке. Его повышение за счет применения многих звеньев низкого порядка ведет к значительному повышению габаритов фильтров и их стоимости.
  • Моделирование цепи на туннельном диоде

    А теперь займемся моделированием явно нелинейной цепи. Выполним его для цепи, которая состоит из последовательно включенных источника напряжения Es, резистора Rs, индуктивности L и туннельного диода, имеющего N-образную вольт-амперную характеристику (ВАХ).
  • Применение интеграла Дюамеля для расчета переходных процессов

    Вернемся к линейным цепям и рассмотрим еще один полезный метод расчета электрических цепей – с помощью интеграла Дюамеля. При нем можно рассчитать временную зависимость выходного напряжения u2(t) цепи по известному входному сигналу u1(t) и переходной характеристике цепи a(t).
Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.