Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Maple 6/7

Основные определения линейной алгебры

Прежде чем перейти к рассмотрению обширных возможностей пакетов Maple 7 по части решения задач линейной алгебры, рассмотрим краткие определения, относящиеся к ней.

Матрица (m х n) – прямоугольная двумерная таблица, содержащая m строк и n столбцов элементов, каждый из которых может быть представлен числом, константой, переменной, символьным или математическим выражением (расширительная трактовка матрицы).

Квадратная матрица – матрица, у которой число строк m равно числу столбцов n. Пример квадратной матрицы размера 3x3:

Иллюстрированный самоучитель по Maple 6/7 › Пакеты линейной алгебры и функциональных систем › Основные определения линейной алгебры

Сингулярная (вырожденная) матрица – квадратная матрица, у которой детерминант (определитель) равен 0. Такая матрица обычно не упрощается при символьных вычислениях. Линейные уравнения с почти сингулярными матрицами могут давать большие погрешности при решении.

Единичная матрица – это квадратная матрица, у которой диагональные элементы равны 1, а остальные элементы равны 0. Ниже представлена единичная матрица размера 4x4:

Иллюстрированный самоучитель по Maple 6/7 › Пакеты линейной алгебры и функциональных систем › Основные определения линейной алгебры

Сингулярные значения матрицы А – квадратные корни из собственных значений матрицы АТ =А, где Ат – транспонированная матрица А (см. ее определение ниже).

Транспонированная матрица – матрица, у которой.столбцы и строки меняются. местами, то есть элементы транспонированной матрицы удовлетворяют условию AT (i,j)=A(j,i).

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.