Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Maple 9

Интерполяция методом Лагранжа

Параметрами процедуры plotl() определим список базовых интерполяционных точек и переменную интерполирования. Код процедуры приведен ниже.

Иллюстрированный самоучитель по Maple 9 › Численные методы › Интерполяция методом Лагранжа

Локальные переменные а и b в теле процедуры используются для определения нижней и верхней границ области интерполирования соответственно Значения обеих переменных инициализируются равными первой указанной в списке-параметре процедуры интерполяционной точке (ссылка В [1.1]– первый элемент из первой пары "точка-значение" списка В). После этого перебираются все интерполяционные точки (ссылка с[1]), и если среди них встречается значение, меньшее текущего значения а, – оно присваивается этой переменной. Значение переменной b переопределяется в том случае, если выбранная точка имеет значение, большее текущего значения b.

В результате выполнения цикла в переменной а будет записана самая левая точка, в переменной b – правая. Наконец, вызывается процедура отображения двухмерной графики plot(), в которой отображаемыми функциями указаны интерполяционный полином Лагранжа, построенный по точкам списка В, а также сами эти точки. Ниже приведен пример вызова разработанной только что процедуры.

Иллюстрированный самоучитель по Maple 9 › Численные методы › Интерполяция методом Лагранжа

Аппроксимация зависимостей интерполяционными полиномами Лагранжа наиболее эффективна, когда интерполируемая функция сама является полиномом. В этом случае, если взять достаточное количество базовых точек, можно добиться абсолютного совпадения. Однако подобные ситуации случаются не часто, и вопрос о погрешности, возникающей вследствие интерполяции, представляется актуальным. Что касается непосредственно метода Лагранжа, то на границах области интерполирования соответствующие полиномы могут в значительной степени отклоняться от прямой, соединяющей соседние точки. Последнее далеко не всегда приемлемо.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.