Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Maple 9

Численное дифференцирование

Очень часто приходится сталкиваться с ситуацией, когда при численном решении той или иной задачи необходимо вычислить производную или решить дифференциальное уравнение – в численном виде, разумеется. В этих случаях используется все та же процедура dsolvef), что уже встречалась ранее при решении дифференциальных уравнений в аналитическом виде. Однако для нахождения численного решения (или производной в численном виде) при вызове процедуры следует указать опцию numeric. Во всем остальном синтаксис вызова процедуры практически такой же, как и при поиске аналитических решений, но некоторые отличия все же имеются.

Процедура может использоваться, как уже отмечалось, для вычисления производных, а также решения задач Коши и краевых задач. По умолчанию при решении задач Коши применяется метод Рунге-Кутта-Фэлберга (Runge-Kutta-Fehlbeig) порядка четыре-пять, а при решении краевых задач – экстраполяция Ричардсона (Richardson). Метод может быть изменен явным указанием значения опции method. Возможные значения опции и их описание приведены в табл. 7.4.

Таблица 7.4. Значения опции method.

Значение опции Описание
bvp Используется при решении краевых задач. Тип задачи (то ли это задача Коши, то ли краевая задача) вычислительным ядром Maple определяется автоматически. Поэтому значение для опции указывается в таком формате: method=bvp[метод]. В качестве значений могут указываться значения: trapdefer (метод трапеций), middefег (метод средней точки), traprich (усовершенствованная схема для метода трапеций) или midrich (усовершенствованная схема для метода средней точки). По умолчанию используется метод traprich
classical Классический метод построения численного решения. Допускается два типа определения значения: method=classical или method-classical [метод]. Здесь метод может быть таким: foreuler (прямой метод Эйлера; используется по умолчанию), heun-form (усовершенствованный метод Эйлера, или правило трапеций), impoly (модифицированный метод Эйлера), rk2 (классический метод Рунге-Кутта второго порядка), rk3 (классический метод Рунге-Кутта третьего порядка), rk4 (классический метод Рунге-Кута четвертого порядка), adambash (метод Адамса-Бэшфорда (Adams-Bashford), или метод предиктора) или abmoulton (метод Адамса-Бэшфорда-Молтона (Adams-Bashford-Moulton), или метод предиктора-корректора)
dverk78 Метод Рунге-Кутта порядка семь-восемь
gear Метод простой экстраполяции. Метод можно конкретизировать, указав method=gear[bstoer] или method=gear[polyextr]. В первом случае используется рациональная экстраполяция, во втором – полиномиальная
lsode Опция активизации утилиты решения жестких дифференциальных задач. Допускается восемь встроенных методов, среди которых вызываемый по умолчанию метод Адамса с использованием функциональных итераций без вычисления функционального определителя (adamsfunc), метод Адамса с использованием итераций и вычислением полного функционального определителя (adamsfull), метод Адамса с использованием итераций и вычислением диагонального функционального определителя (adamsdiag), метод Адамса с вычислением ленточного функционального определителя (adamsband), метод обратного дифференцирования с использованием функциональных итераций (backf unc), метод обратного дифференцирования с использованием итераций и вычислением полного функционального определителя (backf ull), метод обратного дифференцирования с использованием итераций и вычислением диагонального функционального определителя (backdiag) и метод обратного дифференцирования с использованием итераций и вычислением ленточного функционального определителя (backhand). При использовании методов adamsband и backhand необходимо также задавать параметры функциональной матрицы
rkf45 Метод Рунге-Кутта-Фэлберга порядка четыре-пять
rosenbrock Метод Рунге-Кутта-Розенброка (Rosenbrock) порядка три-четыре
taylorseries Решение ищется в виде разложения в ряд Тейлора

Кроме опции method, могут быть задействованы и другие опции. Они приведены в табл. 7.5.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.