Об алгоритме дифференцирования
Если увеличение ошибки на правом конце графика является совершенно очевидным, поскольку, согласно формуле (3.1), чем больше А, тем больше погрешность, то рост ошибки при очень малых Д может, на первый взгляд, показаться неожиданным. Однако все дело в том, что, применяя разностную формулу, мы неявно полагали, что умеем точно вычислять значения функции f (х) в любой точке. Между тем, любые компьютерные вычисления сопряжены с неустранимыми погрешностями, в частности, обусловленными дискретным представлением чисел. Поэтому в реальности мы можем вычислить значение f (х) лишь с некоторой погрешностью 8, обусловленной (по крайней мере) заведомым округлением чисел при расчетах на компьютере.
В результате, при очень малом шаге разностные формулы означают вычитание друг из друга близких чисел. В этом случае ошибки вычисления функции f (х) становятся доминирующими и приводят к существенному росту суммарной погрешности вычисления разностной производной. Отсюда как раз и следует тот вывод, что значение шага следует выбирать "не очень малым", иначе ошибки вычисления f (х) неминуемо сделают результат дифференцирования неправильным. Глядя на рис. 3.5, легко сообразить, что в данном случае следует выбирать промежуточные значения Д, которые обеспечат минимальную (или почти минимальную) погрешность.
Следует подчеркнуть, что в зависимости от характера дифференцируемой функции диапазон приемлемых значений Л будет различным. Поэтому в каждом конкретном случае требуется совершать дополнительные шаги, тестирующие верность выбора шага для численного дифференцирования. Такая процедура, кстати говоря, заложена в адаптивном алгоритме дифференцирования, примененном в Mathcad, что делает его весьма надежным для численного расчета производной.
С учетом сказанного выше, с дифференцированием в Mathcad обычно не возникает сложных проблем. Исключение составляют функции, которые дифференцируются в окрестности сингулярной точки; например, для функции f (х)=1/х это будут точки вблизи х=0. При попытке найти ее производную при х=0 (рис. 3.6) будет выдано сообщение об одной из ошибок деления на ноль "Can't divide by zero" (Деление на ноль невозможно) или "Found a singularity while evaluating this expression. You may be dividing by zero" (Найдена сингулярность при вычислении этого выражения. Возможно, вы делите на ноль).
Рис. 3.6. Если производная функции в данной точке не существует, выдается сообщение об ошибке
Если попробовать численно определить производную очень близко к нулю, например, при х=10-100, то, несмотря на существование производной, может появиться сообщение об ошибке "Can't converge to a solution" (Невозможно найти решение). Новые версии Mathcad (начиная с 11-й) справляются с указанной трудностью, поскольку в них даже для численного дифференцирования сначала задействуется символьный процессор, поставляющий аналитическое решение, подстановка в которое аргумента дифференцирования дает верный результат. Встретившись с одной из упомянутых ошибок, присмотритесь внимательнее к дифференцируемой функции и убедитесь, что вы не имеете дело с точкой сингулярности.